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Introduction
Many, if not most, revolutionary scientific theories have come about 

because someone observed something strange and began to ask – why is 
that? Many of these discoveries have been made almost by accident 
when the discoverer was actually trying to do something else.

In 1644 Evangelista Torricelli was attempting to create a vacuum by 
using the weight of a column of mercury in a long glass tube. One day 
he noticed that the height of the column of mercury in the tube varied 
with the weather and concluded that the reason was that air had weight 
and that, in fact, we lived 'at the bottom of an ocean of air'. The daily 
variation in pressure was due to 'waves of air' passing over us on the 
surface of this ocean. In a sense, this accidental discovery was the start 
of the whole science of meteorology.

Hans Christian Oersted is said to have noticed, while delivering a 
lecture on magnetism, that a compass needle deflected when he 
switched on a nearby current thus initiating the study of 
electromagnetism. While it is true that he, and others, had been 
searching for a link between the two phenomena for many years (sailors 
had long known that ships compasses were unreliable in a thunderstorm, 
for example), it seems highly probable that the precise arrangement of 
wires and compass needle on the bench that day was largely accidental.

In 1896 the French physicist Henri Becquerel was investigating the 
possibility that phosphorescent substances might emit the newly 
discovered X-rays. The procedure he used was to wrap a prepared 
photographic plate in black paper; place a phosphorescent compound on 
the plate and expose it to the sun in order to activate the 
phosphorescence and then see if any rays had penetrated through to the 
sensitive plate. One day, having prepared some plates and placed some 
Uranium salts on top the clouds came over and obscured the sun so he 
placed the plates into a drawer and forgot about them. Some time later 
he remembered the plates and decided to develop them anyway, 
confident that they would be blank because the salts had never been 
exposed to strong light. Imagine his astonishment when he found that 
the plates were heavily exposed showing that Uranium salts emit 
something like X rays all the time! This discovery quickly opened up a 
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completely new field of research – radioactivity.

Of course, not all such discoveries are happy accidents. When Isaac 
Newton noticed that a glass prism caused the image of the Sun to be 
elongated and split into colours, he was only refining an observation that 
the makers of chandeliers had been aware of for centuries. Nor would he 
have been the first to ask the question why this was so; he was, 
however, the first to formulate a coherent answer to the question. 
Darwin and Wallace were able to ask the question why do species exist 
only because they had both amassed an immense amount of 
observational experience over many years.

But just occasionally a genius comes up with a new theory, not 
because he has discovered something new which needs explaining, but 
through a deep seated belief that it must be so. Often, it has to be said, 
such a priori theories prove utterly false. Aristotle's theory of the Four 
Elements and Kepler's 'Harmony of the Spheres' spring to mind. But 
Galileo's idea that uniform motion was not a condition which had to be 
constantly maintained but was itself a state, no different in principle to 
the state of rest, had absolutely no observational evidence whatsoever in 
support of it. The famous experiment involving the dropping of weights 
from the leaning tower of Pisa, if it ever happened, was probably carried 
out by Galileo's detractors to prove him wrong rather than the reverse 
and the idea of proving Galileo's ideas about the relative nature of 
motion by dropping a cannon ball from the mast of a ship is laughable. 
But what else could he say? He just knew he was right and that, if only 
you could pump all the air out of the Duomo, a hammer dropped from 
the top of the dome would fall no faster than a feather and that, if 
chariots and ships existed which could travel smoothly at high speeds, it 
would be as easy to pour a glass of wine on board as it is in a tavern in a 
piazza. Yes, his intuition was not perfect. He thought that uniform 
motion in a circle was the natural state of things, not motion in a straight 
line, and that the tides proved his theory that the Earth moved. He was 
wrong on both counts but Newton put these things right within a few 
years.

Another a priori theory was James Clerk Maxwell's theory of 
electromagnetism. By 1860 it was well established that a stationary 
system of electric charges created a static electric field (Coulomb's law), 
a constant current created a constant magnetic field (Oersted's law) and 
that a changing magnetic field could create a constant electric field 
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(Faraday's law). Maxwell realised that these three phenomena positively 
demanded a fourth – namely, that a changing electric field would 
generate a constant magnetic field. Maxwell had no experimental 
evidence for this phenomenon, he just knew it had to be so.

In the above diagram a current I is flowing onto the left hand plate of a 
capacitor and off the right hand plate. No current flows from the left hand plate  
to the right hand plate; all that happens here is that the electric field E 
increases. The currents in the wires obviously create a magnetic field. Does the 
magnetic field just stop? Or does the changing electric field create a magnetic 
field also?

This profound insight led to the prediction that light was itself an 
electromagnetic wave and that other waves with different frequencies 
and wavelengths would yet be discovered.

Einstein's two great Relativity theories were also based on nothing 
more than a conviction that it must be so.

As an old man Einstein recalled that, as a teenager, he often 
wondered what it would be like to ride on a light beam; later, when he 
had learned about Maxwell's theory he became uncomfortable with the 
idea that you could ever travel beside a light beam and see it, as it were, 
'frozen' in space. Maxwell's equations did not seem to require a frame of 
reference against which to measure the speed of light nor did they seem 
to need an 'aether' through which the light had to travel. Once you had 
accepted the idea that electric and magnetic fields could exist by 
themselves in a complete vacuum, there seemed to be nothing to stop a 
system of changing electric and magnetic fields propagating themselves 
through that vacuum at the speed predicted by Maxwell.

But this realisation brought with it an apparent contradiction. How 
could two observers in relative motion through empty space get the 
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same answer for the speed of light? For most scientists of the day, this 
riddle had only one possible solution. Light travelled at a fixed speed 
through absolute space (whether or not an actual aether existed) and that 
the observer who was at rest with respect to absolute space would 
measure the correct value for the speed of light and the other observer 
would get it wrong.

But Einstein was not satisfied. By the time he was 21 years old, he 
had acquired a teaching diploma in maths and physics (in which 
subjects he excelled) but failed to get a teaching post, so a couple of 
years later he took up a position in the Swiss Patent Office in Bern. The 
duties there obviously did not tax his brain over much and he had time 
to work on several problems in physics besides the nature and behaviour 
of light. Indeed, if he had only published the 1905 paper on Brownian 
motion or the paper on the photoelectric effect and nothing else in his 
whole life, he would still have earned his place alongside the likes of 
Lord Kelvin and Max Planck as one of the greatest scientists of the day 
but it was his paper on Special Relativity that set him apart as a genius. 
Like Galileo and Maxwell before him, he just knew that the speed of 
light had to be constant for all observers, whatever their relative 
motion1. And with that conviction he set about working out exactly what 
the consequences of that assumption would be and where the logical 
contradiction would rear its ugly head. What he discovered was that 
rulers would shrink and clocks would run slowly – but there was no 
logical contradiction at all. In fact, it all worked out beautifully.

Later that same year a second paper extended his theory to include 
energy and momentum and it was this second paper which included the 
now famous equation

E = mc2

The Special Theory of Relativity is usually considered to apply only 
to observers in constant motion. Actually it applies equally well to the 
dynamics of accelerated motion provided that the concept of a force is 
defined appropriately. But Einstein was still not completely satisfied. He 
had shown that no experiment could be performed inside an inertial 

1 It is true that an experiment had been performed in 1887 by the American 
physicists Michelson and Morley which provided strong experimental 
evidence that this was so but, apparently, Einstein was unaware of this 
result. 
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laboratory to determine whether or not it was moving – indeed, this 
principle is essentially the foundation of Special Relativity – but it was 
still possible, he realised, to determine whether or not the laboratory was 
accelerating. On the other hand, he knew that gravity acted very like 
accelerated motion so, perhaps, the principle could be extended to 
include the impossibility of distinguishing acceleration from gravity – 
an assumption known as the Equivalence Principle.

In the event it took him 10 years of concentrated effort and a lot of 
new mathematics to prove that there were no logical contradictions in 
this idea either. The result was the General Theory of Relativity which 
was published in 1915-16.

At first, scientists were understandably cautious. Special Relativity 
was elegant but seemed to have little relevance to contemporary physics 
– after all the fastest thing on the planet at the time was a rifle bullet. 
Even the recently discovered 'cathode rays' appeared to travel at speeds 
much less than the speed of light. The only experiment which supported 
Einstein's theory, the Michelson-Morley experiment in which two light 
beams are set to race along two arms at right angles, could easily be 
explained either by 'aether drag' or by a physical contraction of one of 
the arms. The prediction that all particles had energy by virtue of its 
mass seemed to have more relevance, but this only became apparent in 
the subsequent decade with the discovery of the transmutation of the 
elements and the energy released in nuclear reactions. 

By the time the General Theory appeared, the Special Theory had yet 
to be conclusively demonstrated experimentally (although the majority 
of scientists accepted it); but the General Theory seemed to offer some 
categorical predictions which could be verified with precision. And so it 
was that in 1919 a number of expeditions set out to observe some stars 
during a total eclipse of the Sun. According to Maxwell's 
electromagnetic Theory of light, the Sun's gravity should have no effect 
on the passage of light nearby. On the assumption that light was a 
stream of particles – a view supported by evidence from the 
photoelectric effect and also a simple interpretation of the Equivalence 
Principle – it was expected that the light would be deflected by a certain 
small angle. But the full General Theory which takes into account the 
distortions of spacetime produced by the mass of the Sun predicted an 
angle twice this amount.
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When the results of the astronomical observations were analysed and 
published they were hailed as a complete vindication of Einstein's 
theory. For some reason the editor of the New York Times decided that 
he could make a big story out of this and published the famous headline 
'LIGHTS ALL ASKEW IN THE HEAVENS – but Nobody Need Worry' 
and overnight, Einstein and his theories became a household name. 

 Public reaction to the theory was, understandably, confused. Most 
readers would have understood little of what was being claimed but 
anyone who took the trouble to read further could be forgiven for 
reacting with sheer disbelief. The very idea that space and time could be 
mistaken one for another seemed to run counter to 2000 years of human 
history; the very thought that two events could change their temporal 
order depending on your point of view seemed totally illogical; and the 
idea that a wandering space traveller could return many years younger 
than his twin brother, frankly absurd. Einstein was not just putting 
forward a new physical theory, he was shaking the very foundations of 
our beliefs about the universe we lived in.

In 1931 a book was published (in German) titled 'A hundred authors 
against Einstein'. Einstein's dry comment was 'If I were wrong, one 
author would be enough.' But the debates have not stopped. Even while 
convincing experimental evidence for the reality of time dilation from 
the decay of muons was pouring in, the respected physicist and Fellow 
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of the Royal Astronomical Society Herbert Dingle argued in 1950 that 
relativity 'unavoidably requires that A works more slowly than B and B 
more slowly than A – (a proposition) which it requires no super-
intelligence to see is impossible.'

The reality of time dilation and the resolution of the twins paradox 
has largely been accepted now; but length contraction still causes much 
heated debate in science forums on the internet these days, in particular 
in respect of the 'Broken Rope' paradox (also called Bell's spaceship 
paradox) and the 'Rotating Space Station' paradox (also called the 
Ehrenfest paradox).

General Relativity is usually considered to difficult for mere mortals 
to understand and attempts to make its effects comprehensible are 
usually restricted to fanciful accounts of black holes, wormholes and 
time warps. But in these days of fantastically accurate GPS satellites, 
the phenomenon of Gravitational Time Dilation is of great importance 
and it is no more difficult to understand that kinetic time dilation – a 
process which is not helped by the fact that many books and websites 
still give the totally false impression that Gravitational Time Dilation is 
somehow related to the strength of gravity at the point in question.2 

As for Cosmology, while here are many excellent accounts of our 
current understanding of the history of our universe, almost no attempt 
has yet been made to explain to the layman how we can see objects 
which are so far away that it would take twice the age of the universe 
for light to reach us from them.

I will not claim to have the last word on these issues but nothing 
sharpens the mind like a good puzzle and serious consideration of these 
problems can do nothing but help us understand one of the most 
remarkable theoretical discoveries ever made by a mortal man.

2 For example one website states that 'The stronger the gravity, the more 
spacetime curves, and the slower time itself proceeds.' A similar error can be 
found in Martin Gardner's otherwise excellent book 'Relativity Simply 
Explained' Dover 1996 p. 116.
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Part 1: Length and Time
Relative Motion

Arthur and his sister Betty were travelling up to London on the train. 
Feeling the need to stretch his legs, Arthur wandered off down the train 
for a walk. A few cars down he came across the refreshment bar and 
bought himself a coffee. When he returned, coffee cup in hand, his sister 
was not unreasonably a bit cross.

'You didn't think to get me one too' she complained.

'No. I thought...'

'You didn't think at all. Men are so selfish! Where did you get that 
coffee anyway?' she said, rising from her seat.

Not feeling particularly charitable towards his sister, Arthur replied 
'Just north of Watford, actually.'

'Pah!' expostulated Betty and stomped off in the direction Arthur had 
come from.

This silly little anecdote makes an important point. When you are in 
a moving train, there are two obvious frames of reference which you can 
use to describe the position of an event in space and time. Betty 
expected Arthur to reply, using the train as a frame of reference 'three 
cars down in that direction', but Arthur deliberately chose to adopt the 
external world as his reference frame. Both answers are equally valid. 
And, given the speed of the train, it is easy to convert from one frame to 
another.

The Galilean Transformation

Let us suppose that Arthur started off on his walk when the train was 
passing Rugby and that he and Betty agree to synchronise their 
coordinate systems so that, in both frames, this event happens at 
spacetime coordinates (0, 0). Now Arthur found the refreshment bar 
three cars, that is 60 m towards the front of the train and bought his 
coffee 10 minutes after leaving Betty. In this time the train had travelled 
30 km (at 50 ms-1 or 3 km per minute). With reference to the ground (the 
'stationary' frame) the coordinates of the event are (30,060 m, 10 min) 
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but in the 'moving' frame, the coordinates are (60 m, 10 min). In order to 
translate from the 'stationary' frame to the 'moving' frame, we must 
subtract the distance moved by the train. In other words, if an event 
occurs at position x in the stationary frame, its positional coordinate in a 
frame which is moving at a speed v in the positive x direction will be 
x – vt. Of course, we do not expect Arthur and Betty to disagree about 
the time the event took place and in general, the y and z coordinates of 
an event which occurs in three dimensional space will not change either 
so the complete set of equations which translates the coordinates of an 
event from one frame of reference into another which is moving in the 
positive x direction with respect the the first is:

x ' = x − vt
y ' = y
z ' = z
t ' = t

This set of equation is known as the Galilean transformation, not 
because he was the first to write them down or even conceive of them, 
but because he was the first person to realise that it was essentially only 
relative motion that mattered and that, inside a moving frame of 
reference such as a train or, in his case, a ship, objects would behave in 
exactly the same way as they do in a stationary frame. It was this 
realisation that enabled him to conceive of a world which was spinning 
round once every 24 hours and flying round the Sun once every year 
without just leaving everything behind like leaves off a lorry.

The principle of Galilean Relativity can be stated loosely as follows: 
it is impossible to determine the speed of a train (or planet or space 
ship) by performing mechanical experiments contained wholly within 
the train (planet or space ship).

It is important to include the word 'mechanical' in that statement 
because there is, potentially, one way in which you might be able to 
detect absolute motion through space and that is by measuring the speed 
of light. If you found out that light travelled faster in one direction than 
in the opposite direction, you would naturally conclude that you were 
moving through space in the direction in which the speed of light was 
smallest (because in this direction, your speed would be subtracted from 
the speed of light).
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Now when he was a young man, Einstein has wondered what it 
would be like to travel in a space ship beside a ray of light. Could you 
actually make light apparently travel backwards by travelling faster than 
light? Later, Einstein realised that the theory of electromagnetic waves 
worked out by the brilliant mathematician and physicist James Clerk 
Maxwell expressly forbade light from travelling at any other speed than 
300,000 km per second and that led him to speculate what would 
happen if it was impossible to determine your state of motion by any 
experiment at all. What if the speed of light was constant in all frames 
of reference? What then? These speculations led to a bizarre world in 
which rulers shrink and clocks go slow; fathers can return from a 
journey to find themselves younger than their sons; long poles can fit 
inside short barns and pennies can bend as they slip trough holes too 
small for them to fit.

Normally, in everyday life, these effects are too small to notice 
because it is necessary for the relative motion between the relevant 
frames of reference to be a sizeable fraction of the speed of light. But, 
owing to the extreme accuracy with which GPS satellites have to 
regulate their clocks, the effects of  both the Special Theory of 
Relativity and the General Theory (which includes the effects of 
gravity) have to be taken into account in order to enable your 
smartphone to know where it is so it is well worth while trying to 
understand how the apparent paradoxes mentioned above arise and how 
they are resolved.
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The Lorentz Transformation
When we were describing the Galilean Transformation in the 

previous chapter, we made the important assumption that, although 
Betty and Arthur choose to differ about where Arthur bought his coffee, 
they both agree about when he bought it.

But when it comes to trains moving at a sizeable fraction of the 
speed of light (!), time and distance become inextricably entwined and it 
turns out that Betty and Arthur have to disagree about both where and 
when the event took place.

 The set of equations which relates the coordinates of an event in two 
coordinate systems in relative motion are known as the Lorentz 
Transform and is shown in the box below.

x ' =
x − vt

k
y ' = y
z ' = z

t ' =
t − v /c2 x

k

where k = √1 − v2
/c2

3

where c is the velocity of light.

 It is assumed that the motion lies along the X axis so the y and z 
coordinates are unaffected. It is easy to see that if v is much smaller than 
c, k = 1 and the equations reduce to the familiar Galilean transformation.

A simple scenario

Although, in order to appreciate the true beauty and symmetry of 
these equations, we must use some elementary algebra, I am always 
happier to start with a few simple numbers so, following a long tradition 
which started with Einstein himself.4 I ask you to imagine a train 100m 

3 In most text books, the symbol λ is used instead of k where λ = 1/k.. λ 
extends from 1 to ∞ whereas k lies between 1 and 0.

4 Einstein: Über die spezielle und allgemeine Relativitätstheorie, Verlag von 
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long rushing from West to East through a station with a platform 100 m 
long at a speed of v = 60 m/s (about 135 mph). At the back of of the 
train is a guard and at the western end of the platform stands the station 
master. We shall regard the instant at which the guard passes the station 
master as the origin of all our measurements in both space and time. At 
the other end of the platform (i.e. at a distance x = 100m from the station 
master) a porter is carrying some cans of paint and exactly 1s later he 
happens to spill one of the cans all over the platform and the passing 
train. The question is, where on the train will the paint splash appear?

The calculation is easy. In the time t = 1s between the two observers 
starting their watches and the accident with the paint, the train has 
travelled 1 × 60 = 60m and so the paint splash will be found 100 – 60 = 
40m along the train (remember, we are taking the guard as the origin of 
our moving frame of reference).

A non-relativistic train passing through a station

Using letters instead of numbers we find:

Distance moved by train d = vt
Position of paint mark x ' = x − vt

You will recognise this as the main equation of the Galilean 
transform described earlier.

A more interesting scenario

Suppose that, instead of a paint spillage, the station master fires a 
pistol at the instant the guard passes him. At the other end of the 
platform there is a microphone which, when it is triggered by the sound 
of the gun, fires a paintball at the train thereby making a permanent 
mark on the carriage. The question is – how far along the train will the 
paint mark show now?

Friedrich Viewhweg & Sohn, 1916
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In order to make the calculations as easy as possible we shall assume 
that sound travels at 100 m/s. (Perhaps it was a very cold day!) 
Obviously at this speed the sound will take exactly 1s to travel down the 
platform and the calculation is exactly the same as before. It is, 
however, worth considering the situation from the point of view of the 
guard. He sees the platform whizzing by backwards and (if sound waves 
were visible) he would see the sound waves having to struggle against 
the wind making headway at a mere speed of 100 – 60 = 40 m/s relative 
to the train. On the other hand, the destination (i.e. the microphone 
trigger) is travelling towards the struggling sound wave at 60m/s so the 
combined velocity of approach is still 100 m/s and the sound still takes 
exactly 1s to reach the microphone – but it has only advanced 40 m up 
the train in this time.

A Relativistic scenario

Now suppose that, instead of a sound wave, we use a light wave. Of 
course, light travels a million times faster than sound so, to keep the 
numbers simple and comprehensible, let us also pretend that light 
travels at a mere 100m/s. Instead of a microphone we have a 
photoelectric cell but as before this triggers a paint ball marker. At first 
sight, nothing seems to have changed. The light still takes 1s to travel 
down the platform so the paint mark ought to be 40 m along the train as 
before. But when the train is examined in the sheds later, it is found that 
the paint mark is actually 50 m up the train. How is this? What has gone 
wrong?

The answer is that light waves do not behave like sound waves. 
Sound waves travel through a medium – air; and the velocity of sound 
always has to be measured with respect to the medium through which it 
travels. That is why, to the guard on the train, the sound waves appear to 
be travelling more slowly than they should because of the headwind. 
Light waves, however, travel through space, not air. And since it is 
impossible to measure a velocity with respect to empty space, it turns 
out that light always travels at the same speed with respect to any 
observer, however they may be moving with respect to other bodies or 
observers. This is the fundamental principle on which the theory of 
Special Relativity is based – the laws of physics, including the laws 
which govern the speed of light, are exactly the same for all (inertial5) 

5 The word inertial here indicates that observers in accelerated rockets or 
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observers.

Now at first sight it would seem that this assumption must lead to 
contradiction and inconsistency; but this is not the case. It does, 
however force us to abandon the two assumptions we made earlier 
namely that measurements of time and distance are unaffected by speed. 
Let us see why.

In our calculation above, we assumed that the train remained the 
same length as it passed through the station. We must abandon this 
assumption. Let us suppose instead that the train is lengthened or 
shortened by a factor k. (We shall find that with respect to the station 
master (but not the guard) the train is in fact shortened and that k is, in 
this situation equal to 0.8). The station master is correct in saying that 
the light takes 1 s to travel the length of the platform and that in this 
time the train moves 60 m. He is also correct in deducing that at this 
instant the back of the train is 40 m from the Eastern end of the 
platform; but if the train is shortened by a factor k (where k < 1 
remember), that 40 m will, in fact, contain more than 40m of train. It 
follows that we must divide by k to get the correct answer.

In symbols the calculation goes like this: 

Time taken for light to travel x m
t = x /c

Distance moved by train in this time

= vx /c
Distance of paint mark along the train

D =
x − vx /c

k

x ' =
x (1 − v /c )

k

But how do we know what k equals?

To work out k we must look at the situation from the point of view of 
the guard on the train. To him, the train is stationary and it is the 

rotating space stations or gravitational fields are excluded. To include such 
observers we need the General Theory of Relativity.
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platform which is travelling backwards at a speed of 60 m/s. In addition, 
from his point of view, it is not the train which is lengthened or 
shortened, it is the platform which now has length k × 100 m (remember 
k < 1). Now, the light ray is approaching the photocell at a combined 
speed of 100 + 60 = 160 m/s. To the guard on the train the ray therefore 
reaches the photocell in 100k/160 s and travels a distance of 100 × 
100k/160 = 62.5k m. This is the point of the train where the paint will be 
found.

Now obviously, whatever may happen to clocks and rulers while 
objects are in motion, the two observers must eventually agree where 
the paint ball actually hits the train so we have 62.5k = 40/k from which 
we obtain k = 0.8.

Repeating this calculation using letters instead of numbers we find 
that:

c ×
xk

c + v
=

x (1 − v /c)
k

k 2
= (1 − v /c)(1 + v /c)

k2 = 1 − v2/c2

so

k = √(1 − v2
/c2

) 6

If you found this argument a bit hard going, think of it this way: the 
station master thinks that the paint mark is further up the train than 
expected because the train is shortened; the guard on the train reaches 
the same conclusion because, although he sees the light ray and the 
detector approaching each other very rapidly (at 160 m/s) the platform is 
shortened by just the right amount to cause the paint to be spilled 50m7 
along the train.

The Lorentz Transformation

Let us go back to the first scenario with the accidental spillage. You 
will recall that (according to the station master) the porter spills the 
paint 1s after the train enters the station and the coordinates of this event 
relative to the platform are (100, 1). We need to work out what the 

6 Putting v = 60 and c = 100 we get k = √(1 – 0.62) = 0.8
7 62.5 / 0.8 = 40 × 0.8 = 50
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coordinates of this event are relative to the train.

We already know the answer in the case of the spatial coordinate. In 
a time t the train travels a distance vt. The remaining distance along the 
platform is x – vt and the corresponding distance along the train is this 
distance divided by k so:

x ' =
x − vt

k

To work out the temporal coordinate we need to look at the situation 
from the point of view of the guard in the train. To him, it is the 
platform which is shortened, not the train so from his point of view, at 
the instant he passes the station master, the porter is only 100k = 80m 
down the platform. He sees the porter travelling backwards at 60 m/s, 
spilling the paint on the train when he reaches the 50m point along the 
train. The time between these two events is (80 – 50)/60 = 0.5s. This is 
the temporal coordinate we seek.

The equivalent algebra is as follows: the x coordinate of the porter

when the train enters the station

= k × x

when the paint is spilled (eqn 4)

=
x − vt

k

so the temporal coordinate is

t ' =
k x − (x − vt )/k

v

At first glance this expression does not look very pretty but watch 
what happens when we sort it out a bit. Multiplying top and bottom by k

t ' =
k 2 x − x + vt

k v
=

x(k2
− 1) + vt

k v
 

Now since k = √1 − v2
/c2 , k 2

− 1 equals −v2
/c2 . Cancelling 

out v we get the equation we are looking for:

t ' =
t − v /c2 x

k

Putting t = 1 and x = 100 we find that t' = 0.5.
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The constancy of the speed of light

To check that these formulae are consistent we shall use them to see 
how both the station master and the guard come to the same conclusion 
about the speed of light.

In the station masters frame, the paint spilling event has coordinates 
(x, t) so he calculates that the speed of light is c = x/t.

In the guards frame, the paint spilling event has coordinates (x', t') so 
he calculates that is

x '
t '

=
( x − vt)/ k

(t − v /c2 x) /k
But the guard is well aware that in the station masters frame c = x/t 

so he can substitute x = ct into this:
x '
t '

=
(ct − vt )/k

(t − v /c2 ct )/k
=

(c − v)t
(1 − v /c)t

= c

So in spite of the fact that the station master and the guard disagree 
about where and when the paint spilling event occurred, they both agree 
that the light beam travelled at the same speed in their different frames 
of reference.

The constancy of the speed of the train

From the measurements that they have made, both parties can 
calculate the speed of the train. The station masters calculation goes like 
this: Since the train is travelling at a speed v, when the paint is spilled, 
the back end of the train is 100 – v metres up the platform. But later 
inspection shows that the paint was a distance D = 50 m up the train. It 
follows that the factor k is equal to (100 – v)/50. This gives the equation

100 − v
50

= √1 −
v 2

1002

which boils down to

v2
− 160v + 6000 = 0

This equation has two solutions: +60 and +100. The first is obviously 
the correct answer but what can we say about the second? In this case 
the train is travelling at the speed of light, the train is shortened to zero 
length and when the paint is spilled on to the train, any value of D is 
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possible.

What about the guard's calculation? He knows that the end of the 
(shortened) platform and the beam of light are approaching each other 
with a combined speed of 100 + v. He also knows that in this time the 
beam of light travelled 50 m down his train. He can therefore conclude 
that

100 × √1 − v2
/1002

100 + v
=

50
100

or v2
+ 40v − 6000 = 0

This equation has two solutions: –60 and +100. The first answer is 
negative because the guard is not measuring the speed of the train – he 
is measuring the speed of the platform. The second is the degenerate 
result as before.

Later that day the guard and the station master were pondering over 
the position of the paint on the train. Not knowing anything about 
Relativity their conversation might have gone something like this:

S'master: I don't understand it! I know that the paint was spilled 
exactly 1 s after you passed me because the platform is 100 m long and 
light travels at exactly 100 ms-1. I also know that the train was travelling 
at exactly 60 ms-1. So the train must have travelled 60 m in that second 
and that the back end of the train was therefore 60 m up the platform 
when the paint was spilled. So why is the paint 50 m up the train not 40 
m? The only possibility is that the train must have shrunk so that 50 m 
of the train occupied the space of 40 m of platform.

Guard: I don't understand it either but I disagree totally with 
your analysis. You see, I know that the train didn't shrink – after all I 
was on the train not you! I agree with you that the train was travelling at 
60 ms-1 because earlier I timed how long it took for the train to pass 
under a bridge. The time was 1.67 s as you would expect. The first thing 
I disagree with is your statement that the light took 1 s to travel down 
the platform. I think it took a lot less than that because the end of the 
platform and the light beam were approaching each other at a combined 
speed of 160 ms-1. In fact I can tell; you exactly how long it took 
because the paint was found 50 m up the train. Now since the speed of 
light is 100 ms-1, it is obvious that it only took 0.5 s to reach that point 
on the train.
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S'master: But that is ridiculous! My watch clearly showed that it 
took 1 s to travel down the platform.

Guard: Well your watch must be running slowly- that's all I can 
say.

S'master: Wait a minute. If you say that it only took the light beam 
half a second to travel down the platform, the train will only have 
moved 30 m in that time and the paint ought to be 70 m up the train – 
not 50! How do you explain that? Eh? Eh?

Guard: Well …

S'master: Got you now, haven't I?

Guard: Hang on – just let me think a minute. The light beam is 
travelling at 100 ms-1 towards the end of the platform but the end of the 
platform is moving towards the light beam at 60 ms-1 so the combined 
speed of approach is 160 ms-1. Now the platform is 100 m long so the 
time taken will be 100/160 which is...

S'master: 0.625 s! I knew you were talking rubbish! Your numbers 
just don't tally! Admit it! You're wrong. There is nothing wrong with my 
watch – it is the train which shrinks and that's an end to it!

Guard: Okay Okay. Stop crowing. There is something wrong 
here but I can't quite put my finger on it. You think that my train has 
shrunk so by rights I should think that your platform has shrunk...

S'master: Oh! don't be absurd! They can't both shrink

Guard: Hang on, I'm nearly there. I know that the combined 
speed of approach is 160 ms-1 and I know that the time taken was 0.5 s 
so the platform must be 160 × 0.5 = 80 m long. That's it! The platform 
shrinks in exactly the same ratio as the train! The situation is exactly 
symmetrical! You think my train has shrunk but I think that your 
platform has shrunk!

S'master: Well – I suppose there is some logic to that. But if we 
are to be entirely consistent, if, as you say, my watch is running slowly, 
then by all rights I should think that your watch is running slowly. But 
we know that when my watch reads 1 s yours reads 0.5 s.

Guard: Yes, you do have a point there. Give me another 
minute...

S'master: Come on. Time's up. You have had at least five.

19



Guard: Okay, listen. You said that when your watch reads 1 s 
my watch reads 0.5s.

S'master: Sure thing.

Guard: But how do we know that?

S'master: Well I know that it took 1s by my watch for the light to 
travel 100 m up the platform and you say you know that it took 0.5 s for 
the light to travel 50 m up the train.

Guard: Yes I know that – but that isn't the same thing as saying 
that your watch is running twice as slowly as mine because at the instant 
the paint gets spilled our watches are not in the same place!

S'master: What of it?

Guard: Well, you can't put them side by side and compare them 
directly can you?

S'master: I don't see what that has got to do with anything. After 
all, we could just get our watches out and compare them here and now 
and settle the matter.

Guard: I don't think that would settle the matter at all. All this 
business about shrinking platforms and watches running slow depends 
crucially on the speed of the train being constant. Since I passed through 
your station, my watch has turned round and come back the other way 
so any  information about how fast it was going then will probably have 
been nullified on the return journey.

S'master: Well it all seems crazy to me.

Guard: I agree. But even if we don't understand all of the in's 
and out's, the proof that something crazy really does go on it here right 
in front of you – a splash of paint in the wrong place!

S'master: Okay. So lets suppose that you are right and that, to me, the 
train has shrunk, but to you, the platform has shrunk. What about our 
watches? If, as you say, to you my watch is running slowly, then surely, 
to me, your watch is running slowly. Where is the evidence for that?

Guard: Yes, that's a good point. I said earlier that your watch 
was running at half the speed of mine but, on reflection, I don't think 
that is quite right. According to your watch, the two events (the 
triggering of the light pulse and the spilling of the paint) were 1 s apart. 
Now from my point of view, I saw a light beam travel 80m down a 
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shortened platform in this time at a speed of 100 ms-1. In other words, in 
my frame of reference the paint was spilled 0.8 s later and your watch is 
running 80% slower, not 50%.

S'master: How do you reconcile that with the fact that, according 
to you, the paint was spilled 0.5 s later?

Guard: I am not expressing myself clearly. I shouldn't have said 
'in my frame of reference the paint was spilled 0.8 s later' because you 
are absolutely right – in my frame of reference the paint was spilled 0.5 
s later. What I should have said was ' in my frame of reference I 
calculate that in your frame of reference the paint was spilled 0.8 s later 
and that since your watch actually read 1 s, I conclude that your watch is 
running 80% slow'.

S'master:  That sounds a bit complicated but I think I see what 
you mean. What about my views on your watch? Surely, whatever we 
calculate, to me, your watch must be running faster than mine; so where 
is the symmetry in that?

Guard: Well, from your point of view, you see a light beam 
travelling 40 m up a shortened train. You calculate that, from my point 
of view, this should only take 0.4 s. But I am telling you that my watch 
actually reads 0.5 s so you conclude that my watch is going 80% slow 
too!

S'master: Basically what you are saying is that it doesn't make any 
sense to  talk about when, or indeed, exactly where the paint spilling 
took place. We just have to agree to differ.

Guard: Yes – exactly.

S'master: So is all this business about trains shrinking and 
watches running slow just an illusion? It doesn't really happen does it?

Guard: Well, that's an good question. You can argue that all this 
business is just a different perspective on the same events. When you 
look at a circular table for an oblique angle it looks like an oval – but 
nobody would claim that the table has actually shrunk in one dimension 
just because you were looking at it from a different angle. In this case 
there is an obvious frame of reference (namely the three dimensional 
space in which the table sits) which is to be preferred over the arbitrary 
two-dimensional view which we get from a specific location.

But in the case of trains and platforms, there is absolutely no reason 
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why my frame of reference is better than yours or yours, mine. From my 
point of view, your platform really is 80 m long and all its atoms are 
really squashed. Everything in your world really does seem to be 
running slow; your watch is running slow; you breathe more slowly, you 
will live longer than me etc. etc. These are real effects; not illusions.

Likewise, to you, my train really is shorter than it was when it started 
its journey and it is my watch which is running slowly. What is more, I 
can prove to you that the effect is real, not an illusion because – look – 
our watches do not agree. Mine is a few seconds slow compared to 
yours.

S'master: But doesn't that just undermine everything you have just 
said about there being nothing to choose from between our two frames 
of reference?

Guard: No. Because, remember, it was me who travelled to the 
end of the line and came back again. Your frame is special because you 
never changed your speed at any time. Your frame is called an inertial 
frame. Mine wasn't. That is the difference.

S'master: So there really is no paradox here?

Guard: No, none at all. It all checks out beautifully.

S'master: And Einstein figured all this out while he was twiddling 
his thumbs in an obscure Patent Office?

Guard:  That's right. He did.

When the Guard pointed out that their two watches would disagree 
when they were reunited he was opening a whole new can of worms, 
commonly known as 'the Twins Paradox'.
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The Twins Paradox
Albert decides to travel in a fast spaceship at 80% of the speed 

of light to our nearest star Alpha Centauri which is 4 light years 
away leaving his twin brother Ludwig behind on Earth. Not 
knowing much about relativity he and his brother expect the 
journey to take 5 years there and 5 years back. (Time = distance / 
speed = 4 / 0.8 = 5 years). To his astonishment, Albert finds that 
the journey takes less time than he thought. 3 years, to be precise. 
Not finding anything of interest at Alpha Centauri, he heads for 
home. Arriving back at Earth only 6 years older (a fact verified by 
the observation that he had only eaten a little more than half the 
food he had taken with him) an even greater surprise awaits him. 
His brother Ludwig swears that he has been away 10 years after 
all - a fact amply proved by Ludwig's new wife and a family of 7 
children!

The story is surprising enough but the fact that time proceeds more 
slowly for Albert than for his brother is not paradoxical. It is, as we have 
already seen, a straightforward consequence of Einstein's theory of 
Special Relativity; a consequence which has been verified a thousand 
times over by a great number of very different experiments to a 
remarkable degree of accuracy. However much you might find the result 
unpalatable, it remains a fact and contains no paradox.

So where is the real paradox? Let us continue the story. During 
Albert‘s absence, Ludwig had found a book about Relativity in the local 
library and had studied it closely. He had found it so interesting, in fact, 
that he had faxed a copy to his brother in the spaceship. (By a curious 
coincidence, he had faxed it at the precise moment when he had 
reckoned his brother would be arriving at Alpha Centauri - ie 5 years 
after his departure). In the book he had learned about time dilation and 
so he knew that Albert would only be 6 years older when he returned. 
When they were reunited, he was delighted to see his brother in such 
good health

Albert, on the other hand, was utterly dismayed when he saw his 
brother. Owing to the time it takes light (and radio waves) to travel, he 
had received his copy of the book on his way home and had not had 
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time to read it properly. He had, however, got to the bit about time 
dilation and he had reasoned as follows: 'All motion is relative, 
according to Einstein, so I might as well assume that I am the stationary 
one and that it is my brother Ludwig who is travelling at high speed 
away from me. Since he is in motion (relative to me) his clocks must be 
going slow (relative to mine) so when I get home I will find that he is 
younger than me.' As events were to prove, he was mistaken - but what 
is wrong with his reasoning?

I have read several explanations of this paradox and I have never 
been satisfied with any of them. Some juggle with Lorentz 
transformations and prove it mathematically8. Others point to the fact 
that the situation is not, in fact, symmetrical because Albert undergoes 
accelerations and decelerations during which the principles 
of Special Relativity do not apply9 10. The first approach does not help if 
you are not a mathematician and the second is at best misleading and 
quite possibly wrong. Certainly there is no need to invoke any new 
principles from Einstein's General theory to explain the paradox and 
while it is true that the situation is not symmetrical, the paradox arises 
precisely because there is an unexpected and pleasing symmetry in 
Einstein's solution which is absent from the non-relativistic expectations 
of the two brothers.

To explain what I mean, it is necessary to examine very carefully 
indeed exactly what the two brothers expect to happen during the 
journey assuming that there are no relativistic effects at all. To 
emphasise that we are discussing a classical, Newtonian, world we shall 
call our explorer Isaac and our stay-at-home brother, Christian.

Let us suppose that Isaac sets out on Christmas Day on his 5 year 
voyage to Alpha Centauri. As a parting gift, Christian gives to Isaac a 
lovely clock which shows not only the time but the date and the year in 
big luminous letters. 'With this clock,' said Christian, 'you will be able to 
tell exactly what time it is back home whenever you want.' 'Thank you 
so much! I have a present for you too.' his brother replied, pulling out a 
small but beautifully made telescope. 'You can watch me fly away with 
this and if I put my new clock in the window of the spaceship, you will 

8 Feynman, R. Lectures on Physics, Addison-Wesley 1963

9 Davies, P. About Time. Viking 1995 0-670-84761-5

10 Gardner, Martin. Relativity Simply Explained. Dover 1996 p. 116
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be able to tell what time it is aboard ship whenever you want!'. Both 
brothers were so delighted with their presents they decided to buy 
another clock and another telescope so that whenever they wanted to, 
they could look down their telescopes and see what their brother was 
doing and what time it was. They also agreed that throughout the voyage 
they would keep in contact by sending regular Christmas 
radio messages to each other.

Now both brothers were well aware that light (and radio waves) 
travel at a finite speed. They were quite prepared, therefore, to accept 
that, when looking through their telescopes, the brother's clock would 
not look as if it was saying the same time as their own; they also knew 
that they would receive their brother's messages long after they were 
sent. In order to keep track of things, each brother prepared a graph 
showing when (as shown on his clock) he would expect to receive 
his brothers messages. This is what the Earth-bound Christian's graph 
looks like.

 

On the X axis we have Christian's time scale in years from 0 to 10. 
Since it will take 5 years for Isaac to reach Alpha Centauri and 4 years 
for the message to return home, Isaac‘s fifth Christmas message in 
which he confirms his arrival at his destination, will arrive nine years 
after his departure. It follows that the first 5 messages will be received at 
1.8, 3.6, 5.4, 7.2 and 9.0 years. This is shown on the graph by plotting a 
series of dots against the relevant year. The remaining messages come a 
lot closer together because Isaac is on his way home. In effect, the graph 
plots Isaac's time (as seen by Christian through a telescope) against 
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Christian's time. (Remember - we are assuming that there 
are no relativistic effects, only effects due to the finite speed of light.)

Now what does Isaac's graph look like? The situation is a little more 
complicated here because Isaac can make one of two assumptions. The 
first is to accept that it is he who is moving through space and that when 
he is travelling away from Earth, messages take longer to reach him 
because the radio waves have to catch him up as he speeds away from 
the transmitter. (Once again, I must remind you, we are not 
talking Relativity here!), On the outward journey, Isaac is receding from 
Earth at 80% of the speed of light. One year out (when Christian sends 
his first message) he is 0.8 light years away. The radio waves are 
chasing him at the speed of light but the closing speed is only 0.2 light 
years per year. The radio waves will therefore take 0.8 / 0.2 = 4 years to 
catch him up and will therefore reach him at the precise instant that he 
reaches his destination. On the return leg, the closing speed between 
Isaac and the incoming messages is 1.8 times the speed of light. At this 
closing speed the time taken for a radio wave to meet the homecoming 
Isaac will be 1/1.8 = 0.55 years so Isaac will receive the remaining 9 
messages in 9 * 0.55 = 5 years.

It will be noted that, although the two graphs are rather different, 
both brothers expect to be exactly 10 years older when they meet again! 
It is also worth noting that on the outward journey, both see 
their brothers clocks apparently running slow - but by different amounts. 
Christian receives 5 messages in 9 years, a time factor of 5/9 or 0.555. 
Isaac receives only one message in 5 years, a time factor of 0.2. (This 
difference is due to the fact that Christian experiences the Moving 
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Source Doppler effect while Isaac sees the Moving Observer Doppler 
effect.11) On the return leg, the time factors are 5 and 1.8 respectively.

But suppose that Isaac were to insist that it was he who was 
stationary and that it was Christian that was moving. Then, of course we 
would be back to the Moving Source Effect and Isaac would expect to 
see the same effects that we previously worked out for Christian. In this 
scenario you must imagine Isaac in his stationary rocket. For 5 years, 
Earth recedes and Alpha Centauri approaches, then for 5 years Earth 
approaches and Alpha Centauri recedes. The following graph shows 
when Isaac would receive his brother's messages.

Note that under these circumstances, events turn out differently. 
Instead of receiving his first Christmas message when he arrives at his 
destination, Isaac will receive his third a short time later; and the 
changeover point when his brother's clocks change from going slow to 
going fast occurs not when he arrives at Alpha Centauri, but several 
years later, when he receives his fax.

It is, I hope, clear from this that in a non-relativistic world, the timing 
of events depends on who is stationary and who is moving (relative to 
the supposed medium in which light travels - the aether). The miracle of 
the Special Theory of Relativity is that it doesn't matter who is moving 
and who is stationary, the results always turn out to be the same - only 
the results aren't always what you expect!

So how does Special Relativity achieve the miracle of allowing both 
Albert and Ludwig (the relativistic pair) to see their brother's clocks 

11 An explanation and derivation of these will be found in the Appendix.

27



going slow, and yet allow one to be older than the other when they 
meet? The answer lies in contraction of length and the dilation (ie 
expansion) of time.

As we have seen in the previous chapters, the special theory of 
relativity predicts that, as measured by any observer who considers 
himself stationary, moving clocks will run slow and that moving metre 
rulers will appear shorter by a factor k which is the same in both cases 

and is equal to √1 − v2
/c2

. In the case we are considering the factor is 

equal to √1 − 0.82
= 0.6 . When Ludwig learned about time dilation, 

he realised that his astronaut brother Albert would only be 6 years older 
when he got home because for 10 years, his brothers clocks would be 
going slower than his own. During the 10 year voyage, Ludwig 
therefore only receives 6 Christmas messages and, compared to his 
expectations in the absence of Relativity, Albert's clocks appear to be 
running slow by a factor of 0.6. This can be represented by the 
following graph. (The faint dashed line represents Ludwig's (non-
relativistic) expectations for comparison)

The total time factor as measured by Ludwig on the outward journey 
is 3/9 or 0.33 and is the product of the Doppler shift factor 5/9 and the 
time dilation factor 0.6.

Now why does Albert only send three messages before his arrival? 
The answer is that, to Albert, he is, by definition, stationary (all 
observers are by definition stationary in their own frame of reference!) 
and it is the Earth which really is receding and Alpha Centauri which 
really is approaching! To Albert, therefore, the Earth and Alpha Centauri 
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constitute a huge cosmic ruler which was 4 light years long before he 
started moving. Here comes the crucial point. Because he is travelling 
so fast, the length of this ruler shrinks to 0.6 of 4 which is 2.4 light 
years so it only takes 2.4 / 0.8 years to go by at a speed of 0.8 light years 
per year. This is, of course, exactly 3 years. The same is true on the way 
home. That is why Albert makes the round trip in 6 years. He doesn't 
have to go as far as he thought!

What about the messages that he receives from his brother? Because 
of the exact symmetry of the relativistic situation, Albert must see 
exactly the same total Doppler shift in Ludwig's messages as Ludwig 
sees in Albert's. On the outward journey, Ludwig got 3 messages in 9 
years. Albert must therefore receive exactly 1 message in the 3 years it 
takes him to reach Alpha Centauri. By the same token, he will receive 9 
messages on the return journey. His graph therefore looks like this (as 
before, the faint dashed line represents Albert's (non-relativistic) 
expectations based on him being stationary and Ludwig receding from 
him):

We are now at long last, in a position to see clearly in what sense it is 
true for both brothers to claim that the other brother's clocks are running 
slow and yet for the two brothers to have different ages at the end of the 
voyage. For Ludwig, the effects of time dilation on his brother are 
immediately obvious. Albert is 4 years younger than he 'ought' to be! 
For Albert, the argument is a little more subtle. Once again, because of 
the exact symmetry of the relativistic Doppler shift effect, Albert 
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expects to see the same pattern of messages as his brother - ie 5 
messages in the first 9 years and 5 in the last year. What he actually sees 
is 1 in the first 3 (a slower rate) and 9 in the next 3 (also a slower rate). 
In short, the gradients of both Ludwig's and Albert's graphs are 
identical. Both see the other as being both Doppler shifted and time 
dilated. What is different is that for Ludwig the slow rate lasts for 9 
years and the quick one for 1 year resulting in Albert being only 6 years 
older when he gets home. For Albert, the slow rate only lasts for 3 years 
and the quick rate for all of another 3 years resulting in Ludwig being 10 
years older when they are reunited.

As they say in the ad - 'it's all worked out beautifully.'

Perhaps the most important thing to take home from all of this is that 
the resolution of the Twins Paradox has nothing at all to do with 
accelerations and decelerations, nor has it anything top do with General 
Relativity or the warping of spacetime; It is simply a result of the 
combined effects of the classical Doppler shift, length contraction and 
time dilation. The asymmetry between the two twins arises simply 
because it is Albert who swaps from one inertial frame of reference to a 
different one – while his stay-at-home brother remains in the same 
inertial frame throughout.

30



The Twins Paradox revisited
'All these graphs – its just too confusing!' exclaimed Arthur having 

just finished reading the previous chapter. 'What with Doppler shifts, 
time dilation and length contraction – isn't there a simpler explanation?'

'Well, it depends what you mean by simpler.' said his elder sister, 
Betty. 'Some people like real figures and pictures, others are happier 
with a more abstract approach.'

'Well, I am not sure I like the sound of that any better but you might 
as well give it a try.'

'Okay – but you are going to have to let me start somewhere.'

'What do you mean?'

'Well – the author just assumed the formulae for length contraction 
and time dilation. If we are going to start somewhere else, we must 
make some similar assumptions.'

'Fair enough.' agreed Arthur.

'First lets start with the concept of spacetime. Any event (such as 
your birth or the explosion of a distant supernova) takes place at a 
certain location and at a certain point in time. For example, you could 
specify your birth in spacetime by stating the planet you were born on, 
the latitude and longitude of your birthplace and the time and date. In 
general you need three spacial coordinates and one temporal one to fix 
the location of any event in spacetime. In fact we can refer to a set of 4 
coordinates (t, x, y, z) as an event whether or not anything actually 
happens there.'

'Yes, I get that.'

'Good. But we shall be interested in the relationship between two 
such sets of coordinates – Albert's and Ludvig's – which are in relative 
motion. We shall assume that at the instant Albert sets off on his travels, 
these two coordinate systems coincide. i.e. the event of Albert's 
departure is (0, 0, 0, 0) in both systems and that Albert moves off in the 
X direction. What this means is that the Y and Z coordinates of Albert's 
journey are always zero so we shall forget them from now on.'

'So in Ludvig's system, Albert travels 4 light years in 5 years and 
then comes back again while in Albert's system, he remains stationary 
the whole time. Is that right?'
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'Yes, on the outward journey; but when Albert turns round he has to 
abandon his outward coordinate system and step on a different system 
for the journey home.  So there are really three coordinate systems to 
consider. Ludvig can use one system for the whole time but Albert 
cannot. This is why there is an asymmetry in the situation.'

'Yes I see.' said Arthur. 'But can you show that it is Ludvig and not 
Albert who is older when the brothers are reunited?

'Yes, but to do this we need to employ some principle which 
embodies the basic assumption on which Special Relativity rests – 
namely the constancy of the speed of light.'

'And what might that be?'

'It takes the form of a set of equations which relates the coordinates 
of an event in one system  (x, y, z, t) with the coordinates in another  (t', 
x', y', z') which is in relative motion (along the X axis) with speed v. 
These equations are:

x ' =
(x − vt )

k
y' = y
z ' = z

t ' =
( t − v /c 2 x)

k

where k = √(1 − v2
/c2

)

'Ah! I can see the length contraction and time dilation factor in 
there!'

'Absolutely.'

'But how do we use these equations? What do they do?'

'Well, if you know the coordinates of an event in one frame, you can 
instantly work out its coordinates in another. For example, in Ludvig's 
frame, Albert's departure is (0, 0, 0, 0) and you can easily verify that 
when x = 0, y = 0, z = 0 and t = 0, then so do x', y', z' and t'.'

'I see.' said Arthur.

'See if you can work out the coordinates of Arthur's arrival in 
Ludvig's reference frame.'

 'Well, according to Ludvig, his brother reaches Alpha Centauri (a 
distance of 4 light years) 5 years later (travelling at 80% of the speed of 
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light). So x = 4, y and z are both zero of course, and t = 5. i.e. Albert 
arrives at his destination at (4, 0, 0, 5) in Ludvig's frame. Am, I right?'

'No. For technical reasons it is usual to put the time coordinate first 
so the correct answer is (5, 4, 0, 0) '

'OK.'

'Now work out the coordinates in Albert's frame.

'All right. First k = √1 − 0.82
= 0.6 doesn't it? So 

x ' = (4 − 0.8×5)/0.6 which equals... Oh! Of course. It equals zero 
doesn't it? Because Albert's X coordinate is always zero in his frame!'

'Correct. But what about his t coordinate?'

'OK. t ' = (5 − 0.8×4 /c2
)/0.6 But what do I put in for c?'

'Well, since you have been using light-years for the distances and 
years for the time, c is just 1 light-year per year so put in 1.'

'I see. Well that comes to t ' = (5 − 0.8×4)/0.6 which is – 3 years 
exactly!'

'Precisely. Albert is 3 years older when he arrives at Alpha Centauri – 
not 5 years.'

'So if I put x = 0 and t = 10 into the formula I should be able to show 
that he is only 6 years old when he gets back home shouldn't I?'

'Hang on a minute..' said Betty.

'No don't spoil my fun – let me work it out: t ' = (10 − 0.8×0 )/0.6

which equals – wait a mo! What's gone wrong? That comes to 16.7 
years not 6!'

'I tried to tell you.'

'What?'

'You have forgotten what I said earlier. When Albert turns round he 
has to abandon his outward coordinate system and hop onto another one 
travelling in the opposite direction. So you can't just plug the new 
numbers into the old equations.'

'So what equations can we use?' asked Arthur.

'Well imagine a kind of mirror image of Albert reflected in a magic 
mirror on Alpha Centauri. When Albert departs from Earth his image is 
8 light years away and as Albert travels towards the star, his image 
converges on him and they return to Earth together. What we must do is 
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write down the equations which relate Ludvig's system to that of 
Albert's image.'

'How do we do that?'

'The first thing to note,' said Betty, 'is that Albert's image travels in 
the opposite direction so v is –0.8 not 0.8. Second we must arrange it so 
that when t = 0 and x = 8 (Albert's image is 8 light years from Earth at 
the start) then x' = 0. These equations will do the trick:

x ' = ((x − 8) + 0.8 t )/0.6
t ' = (t + 0.8 (x − 8))/0.6

'Yes, I can see that when t = 0 and x = 8 then x' = 0; and I see that 
you have changed the sign of v.'

'Now put in Ludvig's coordinates for Albert's return i.e x = 0 and 
t = 10.'

'Here we go - t ' = (10 + 0.8×(0 − 8))/0.6 which is, hang on, 
yes! It is 6 years!'

'Excellent! Are you any more satisfied?'

'Well, to be honest, not really. I am still finding it difficult to accept 
that time actually goes more slowly for Albert than it does for Ludvig.'

'That is because you still haven't grasped the subtlety of time 
dilation. Time does not go more slowly for Albert. For him, time 
proceeds at its normal rate. It is the distance which he has to travel 
which is shorter than he expects. For Ludvig, the distance Albert travels 
is the same – namely 4 light years – but Albert's clocks and metabolic 
rate and everything else are going slow so he takes less time.'

'I suppose so.'

'Put it this way. Both Albert and Ludvig travel through spacetime 
from (in Ludvig's frame) (0, 0, 0, 0) to (10, 0, 0, 0). But they take 
different routes to get there. Ludvig passes through (5, 0, 0, 0) while 
Albert passes through (5, 4, 0, 0). It is a bit as if Ludvig travels from A 
to B directly but Albert goes via C. In ordinary space, the distance 
between two points is calculated using Pythagoras' theorem:

      Distance between two points = √Δ x
2

+ Δ y
2

+ Δ z
2

(where the Δ sign means 'change in') but in spacetime you have to 
calculate the distance (or 'interval') between two events differently:

34



Interval between two events = √ t2
− (Δ x2

+ Δ y2
+ Δ z 2

)/c2 12 
where c is the velocity of light (in this case equal to 1 light year per 
year)

The interval between (0, 0, 0, 0) to (10, 0, 0, 0) is 10 years.

Now the interval between (0, 0, 0, 0) and (5, 4, 0, 0) is 

√52
− 42

= 3 years. So is the interval between (5, 4, 0, 0) and (10, 
0, 0, 0). So the total interval between (0, 0, 0, 0) and (10, 0, 0, 0) going 
via (5, 4, 0, 0) is only 6 years. It may seem odd that going the 'long way 
round' takes a shorter time – but that's relativity for you!

12 See page 57 for the reasons why I have chosen to define interval in this way.
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The Pole in the Barn Paradox
'OK.' said Arthur one day. 'I just about get time dilation and the twins 

paradox – after all, if you travelled directly from London to Leeds by 
car, your odometer would read about 200 miles, but if I did the same 
journey via Birmingham, it would be surprising, to say the least, if my 
odometer read the same as yours.

'Yes, indeed, except that your odometer would read more than mine 
but in the case of the twins, the one who does the 'extra distance' 
(through spacetime) ends up being younger than the stay-at-home twin.'

'Yes, but that's because 'distances' through spacetime are measured 
with a minus sign in front of the distance terms isn't it?'

'Absolutely! I am impressed!'

'Thanks. You see, I am not completely stupid.' said Arthur. 'So 
moving clocks go slow. Yes, that makes some sort of sense. I know that 
it is not that the motion itself causes the clock to slow down in some sort 
of physical sense – because, to you, it is my clocks which are going 
slow; its just an illusion isn't it?'

'Well, not really. You can't just write off the effects of Special 
Relativity as some kind of illusion. It is not the case that your clocks just 
look as if they are going slowly – they really are going slowly. And, of 
course, to you, my clocks really are are going slow. But there is no way 
we can put the clocks side-by-side, as it were to compare them directly 
because, while we can reset them to zero as they fly past each other, by 
the time we want to compare them a minute or a day later they are miles 
apart.'

'I guess so. But that sounds like a bit of a cheat to me. It is like two 
kids arguing over whether their bit of cake was bigger after they have 
eaten it!'

'That's a rather nice image! I like it.' said Betty.

  'Hey – that has given me an idea.' Arthur continued, 'OK we can't 
put two clocks side by side but we can put two poles side by side and 
compare them as they go by. According to you, my pole should be 
shorter than yours – but your pole should be shorter than mine! How can 
that be?'

'Well, it's just the same as the clocks.'
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'No it isn't just the same.' said Arthur. 'Look. You know that old pole 
of my uncle's13 that is hanging outside the barn in farmer Jarvis' field. 
We can't get it into the barn because the pole is 5m long while the barn 
is only 4m long. But if I were to run through the barn carrying the pole 
at, say, 80% of the speed of light (!) according to you the pole would 
shrink and it might even fit into the barn!'

'You are quite right. Yes it would. At a speed of 0.8c the pole will be 

shrunk by a factor of √1 − 0.82
= 0.6 so the pole will be exactly 3m 

long and will easily fit inside the barn.'

'But that's ridiculous!' exclaimed Arthur.

'No it isn't. Because you are going so fast, the pole is contracted and 
now it will fit into the barn – according to me at any rate.'

'Well either the pole fits into the barn or it doesn't. Surely there can 
be no argument about that.'

'Well...'

'OK put it like this. Suppose that at the instant the front of the pole 
hits the back wall of the barn, you slam the doors shut. Now either you 
succeed in shutting the door or you don't. If you are right, the door will 
shut but if I am right, at least a metre of pole will be sticking out of the 
barn.'

'No, No...'

'Ha! Got you! The situation is even worse than I thought!' said 
Art6hur gleefully, 'From my point of view running alongside the pole, it 
is not the pole which has shrunk – it is the barn! The pole is still 5m 
long but, to me, the barn is only 4 × 0.6 = 2.4m so over half the pole 
will still be outside the barn!'

'Yes, but you are forgetting that not only does special relativity affect 
poles and clocks, it also affects what different observers regard as 
simultaneous.'

'Yes, I know that – but you can't have a situation where one observer 
sees an intact pole inside a barn while another sees a broken pole, half 
inside and half outside.'

'True.'

13 Arthur's uncle was a contender in the 1956 pole-vaulting championships in 
Melbourne
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'So which is it? Who is right? You or me?'

'I am, of course.'

'Well explain it to me then.'

'The flaw in your argument is to be found in the phrase 'at the instant  
the front of the pole hits the back of the barn.' Suppose I rig up an 
electronic sensor which detects when the pole hits the wall. This sensor 
sends a signal to the door as fast as possible (i.e. at the speed of light) to 
cause it to shut. Lets consider the situation now from your point of view:

You are stationary, holding a pole which is 5m long. Racing towards 
you is a barn which is contracted to 2.4m. At the instant the front of 
your pole crashes through the back wall of the barn, 2.6m of pole has 
yet to enter the barn and at the same time a flash of light (the signal 
from my sensor) starts to travel towards the door – but because the 
signal cannot travel faster than light, and because the barn is already 
travelling at 80% of the speed of light, the signal can only overtake the 
barn at a relative speed of 20 %. This means that in the time it takes the 
signal to travel the length of the barn (2.4m according to you) the barn 
itself has travelled 5 times further i.e.12m so, by the time the signal 
reaches the door, the back of your pole is well inside the barn.'

'Yes, but that doesn't really answer my question because by the time 
the door slams shut, not only has the back of the pole passed through the 
door, it has actually passed through the whole barn! At no time is the 
pole wholly inside the barn, which is what you seem to be maintaining.'  

'I agree that, to you, there is no instant when the pole is wholly inside 
the barn – but to me, there is. Actually, I haven't really done justice to 
my argument because, with the arrangement I have suggested, the door 
slams shut long after the instant which we are interested in. Let me 
suggest an alternative scenario. Suppose I put my sensor on the door 
itself but delay the shutting of the door by exactly that time which I 
calculate it will take for the front of the pole to travel the length of the 
barn. (Since the barn is 4m long and the pole is travelling at 0.8c, this 
will be 5/c s)'

'OK lets calculate where the pole will be after this time according to 
me. The barn is travelling towards me at 0.8c and I see your clock start 
to tick at the instant the barn reaches the front of the pole. 5/c seconds 
later, the barn has moved 0.8c × 5/c metres which is.. let me see... 4m! 
That still leaves 1m sticking out of the barn like I said all along!'
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'Hang on a minute – you have forgotten one vital factor!'

'What's that?' asked Arthur.

'Time dilation. To you. My clocks are going slow. Remember?'

'Oh, yes.'

'In fact every second recorded by my clock is 1.67 of your seconds 
so the barn will have moved that much more than 4m – 6.67m in fact; 
more than the length of your pole.'

;Yes, I had forgotten that. But I am still not satisfied. It is all very 
well proving that by the time you get round to shutting the door, the 
back of the pole is inside the barn, that still doesn't prove that the whole 
of the pole is inside the barn. To me the front of the pole is sticking out 
of the other end!'

'Yes, there is no way round it. To me, the whole of the pole is inside 
the barn; to you, the pole is sticking out of one end or the other.'

'Hang on.' said Arthur, 'I have thought of something else. Suppose 
that at the instant the front of the pole hits the end wall the pole stops 
dead. According to you there will be no problem in shutting the door 
whichever sensor you use. What is going to happen now? Will the pole 
suddenly expand to its original length and puncture its way through the 
ends of the barn? And what would this look like from my point of 
view?'

'That's a good question. What exactly will happen? The first thing 
you have got to realise is that nothing, nothing, can travel faster than 
light. When the front end of the pole hits the end wall, there is no way 
that the back end of the pole can know about this event so it must carry 
on moving forwards as if nothing has changed. So the pole cannot 'stop 
dead' as you put it. What happens is that a shock wave travels down the 
pole at a speed which is, of course, less than the speed of light and by 
the time this shock wave has reached the back of the pole, the pole is 
completely inside the barn.'

'So what actually happens to the pole?'

'As the shock wave  travels along the pole it physically destroys the 
pole and at the end of the day what we both see is the shattered remains 
of the pole wholly inside the barn.'

'Yes, I see. Sort of anyway. But lets go back to my original point – are 
the effects of special relativity just illusions or are they real? I still 

39



maintain that they are just illusions caused by the finite speed of light. I 
see that, to you, the pole is shorter than the barn – but we both know that 
the pole is really longer than the barn.'

'Yes we both agree that when the pole hangs on the side of the barn 
the pole is the longer but when the pole and the barn are in relative 
motion, then from my point of view, the pole really is shorter than the 
barn.'

'No you can't really mean that.' complained Arthur. 'Just changing 
your point of view doesn't change what is really real! I mean, look at 
this pencil (holding up a pencil pointing towards Betty). To me it looks 
like a pencil but to you it looks like a tiny disc. But we both know that it 
really is a pencil even though it looks different from different angles.'

'Yes I do take your point – but there is something about the effects of 
special relativity which make them qualitatively different from other 
'illusions' like the apparent bending of a stick placed in water or so-
called 'fictitious forces' which appear to act on an object placed in a 
rotating frame of reference. Whether you call these effects 'real' or not is 
basically up to you but the thing which sets the effects of special 
relativity apart is that while in the other cases there is an obvious frame 
of reference which we can all agree on as being the ultimate 'reality', in 
SR all frames of reference are equally valid. Obviously we do not want 
to say that there is no such thing as reality. But the only alternative is to 
say that all observers carry around a different reality with them.'

'So you are saying the the shortening of my pole is not an illusion – it 
is really real?'

'Yes – but you mustn't misunderstand me. All the measurements 
which I can make with my sophisticated clocks and measuring devices 
tell me that your pole really is 3 m long. But I am perfectly happy to 
accept that all the measurement you make on the pole tell you that it is 
actually 5m long. All I am saying is that it is perfectly OK for us to 
agree to disagree about some aspects of reality.'
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The Addition of Velocities
One of the predictions – indeed, absolute requirements - of Special 

Relativity is that nothing can travel faster than light. Understandably, 
many people find this difficult to accept; after all, if you get into a 
rocket and accelerate at a constant rate, surely there must come a point, 
so the argument goes, when you exceed the speed of light.

There are many ways of explaining this effect but most of them 
involve ideas about force, mass and energy which we have not yet 
discussed and which introduce unnecessary complications. The truth is 
that the effect can be explained using nothing more than the ideas which 
have so far been introduced in the following way:

Let us suppose that the guard in the train (which you remember is 
travelling at 60 ms-1) fires a gun forwards down the length of the train at 
the instant that he passes the station master. The gun is known to have a 
muzzle velocity of 75 ms-1 so, on the face of it, the station master should 
see the bullet travelling at 60 + 75 = 135 ms-1 which is faster than the 
speed of light (which, you will recall, is only 100 ms-1 in our fanciful 
scenario).

So that we can do some calculations, let us suppose that, 15 m up the 
train, the guard has rigged up a target which causes a paintball to be 
fired onto the platform. Since, to him, the bullet is travelling at 75 ms-1, 
the time taken for the bullet to reach the target will be 15/75 = 0.2 s. In 
the guards frame of reference, the coordinates of the event are (0.2, 15).

Now let us calculate the coordinates of the same event in the station 
master's frame of reference. We shall use the Lorentz equations quoted 
on page 11 but we must remember that, since to the guard the platform 
is moving backwards, we must put v = –60. This does not make any 
difference to the value of k which is still 0.8.

Now x ' =
x − vt

k
=

15 + 60×0.2
0.8

= 33.75

so the station master will find the paint 33.75 m up the platform.

The temporal coordinate is calculated as follows:

t ' =
t − v / c2 x

k
=

0.2 + 60/10000×15
0.8

= 0.3625

from which the station master must conclude that the speed of the bullet 

41



is 33.75/0.3625 = 93.1 ms-1. In other words, in Relativity, 60 + 75 = 93.1 
– not 135!

It is a simple matter to derive a formula for the addition of two 
velocities by doing the same calculation using letters. In general 
(remembering that we must put v negative)

x '
t '

=
(x + vt )/k

(t + v / c2 x )/ k

if the muzzle velocity of the bullet is u then x = ut so

x '
t '

=
(ut + vt)/k

(t + v / c2 ut )/ k
=

u + v
1 + uv /c2

It is easy to see that if either u or v is equal to c then the result is c 
and that it is therefore impossible to achieve a speed faster than c by 
adding together any number of speeds smaller than c.

So what happens if the train accelerates at a constant rate of, say 
5 ms-2 starting at 60 ms-1?

First we must agree on what we mean by 'accelerate at a constant 
rate'. Normally this means that every second, the speed increases by 
5 ms-1 and the speed of the train would increase linearly – 60, 65, 70, 75, 
80 etc. reaching the speed of light in 8 seconds. But if we are taking 
relativity into account we can't just add 5 ms-1 each time, we must use 
the above formula for the addition of velocities to work out the speeds 
every second14. This gives us the sequence 60, 63.1, 66.0, 68.75, 71.3 
etc. It is clear that, from the point of view of the station master on the 
platform the train is never going to reach the speed of light.

It should, however, be remembered that, to the guard on the train, the 
acceleration appears to be smooth and constant. He will feel a steady 
force accelerating him forward; all he sees is the platform accelerating 
backwards – but never exceeding the speed of light, of course. 

14 Strictly speaking we should use the formula every millisecond or even 
microsecond to get a more accurate result. Better still, we should use a bit of 
calculus but you get the idea, I hope.
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The Penny in the Hole Paradox
'I've had another idea' said Arthur to Betty one day pulling out a large 

square of plywood with a hole in the middle. 'Look' he said, 'here is a 
penny a little smaller then the hole and if I drop the penny horizontally 
like this, it will just fall through the hole. But if the plywood sheet was 
moving fast enough, the hole would be contracted in the direction of 
motion and there is no way the penny could pass through the hole. On 
the other hand, if you were sitting on the sheet you would think that it 
was the penny which was contracted and the the penny would pass 
through it easily. So who is right? Will it pass through the hole or not? 
Either it does or it doesn't.'

'It will pass through the hole,' said Betty confidently.

'But the hole will be too small!'

'No it won't. The penny will be smaller than the hole.'

'So you are saying that your frame of reference is more special than 
mine? And that Einstein is wrong?'

'No, you have just got to think things through carefully.'

'Go on then, explain it to me,' said Arthur.

'Firstly the situation is a bit complicated by the fact that there are two 
objects in motion. It will simplify the argument if we assume that you 
are sitting on the penny and that the sheet is rising slowly upwards while 
moving rapidly from left to right like this:

α

'Yes OK. I see that you have drawn the slot smaller than the hole too. 
That is good because it shows that the penny will definitely not go 
through the hole as I said.'
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'Yes I have done that deliberately but there is one feature of the 
diagram which is not correct.'

'What is that?'

'Wait and see,' said Betty mysteriously. 'First let us agree that the the 
penny and the sheet are very thin so it doesn't matter what the vertical 
speed is, only that it is small and constant. Suppose this (non-
relativistic) speed is u and that the horizontal (relativistic) speed of the 
sheet is v . This means that the tangent of the angle which I have marked 
α is equal to u/v.

'Let us also suppose' continued Betty' 'that the diameter of the hole 
and the penny when stationary is d. So, from your point of view, the 
hole is contracted to a width kd but I hold the view that it is the penny 
which is contracted to a width kd (k being less than 1). Are we agreed so 
far?

'Yes,' Arthur agreed. 'Perfectly.'

'Now let us, for a moment, consider the situation from the viewpoint 
of a mutual friend, Chris, who is moving to the right with a speed v/2. 
From Chris' point of view, the penny is moving to the left and the sheet 
is moving to the right both with the same speed v/2 and both the penny 
and the hole are contracted by the same amount. To Chris the penny will 
fill the hole exactly as it passes through and symmetry dictates that there 
will be an instant of time when this happens, the left hand edge of the 
penny will just graze the left hand edge of the hole and similarly with 
the right hand edge.'

'I don't see what all this has got to do with anything.'

'The important thing,' said Betty, 'is that if Chris sees both edges of 
the penny come into contact with both edges of the hole, then all other 
observers must see the same thing  happen (though not necessarily at the 
same time).'

'So what? It remains true that, to me, the hole is smaller than the 
penny so it stands to reason that, since the penny is horizontal, it can't 
possibly go through the hole.'

'Who said anything about the penny being horizontal?'

'I did,' said Arthur, 'I said that the penny would be horizontal when it 
was dropped.'

'Yes – but that was when it was stationary. Now it is moving 
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downwards.'

'What has that got to do with it? I know it is horizontal – after all, I 
am sitting on the d---d thing!'

'Yes, to you it is horizontal, but to me it is not. From your point of 
view it is the sheet which is tilted. Look. It works like this:

βα

'The sheet is tilted up at an angle β which is such that, as it rises the 
left hand edge of the hole just grazes the left hand edge of the penny; a 
short time later, the right hand edge of the hole just grazes the right hand 
edge of the penny. The penny slides through the hole rather like a letter 
through a letterbox.'

'But I thought you said that there was an instant in time when the 
penny exactly fitted the hole.'

'I said that Chris noted that there was such an instant but, to you the 
left hand edge of the penny enters the hole before the right hand edge. 
As we shall see in a minute, to me the right hand edge of the penny 
enters the hole before the left hand edge.'

'But that's absurd; how can we disagree about the order in which two 
events occur?'

'The crucial point here' said Betty, 'is that the two events occur very 
close together in time. So close, in fact, that it is impossible to send a 
signal from one event to the other. Such events are said to be space-like 
because they are more separated in space than they are in time.'

'It will take a bit of time to get my head round that. So what does the 
situation look like from your point of view?'

'Like this:' said Betty, showing her brother the following diagram:
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α

β

To me, the penny is contracted but tilted up by the same angle β so 
that the edges of the penny just scrape the edges of the hole, but this 
time it is the right hand edge which enters the hole first.'

'Well I never!' exclaimed Arthur. 'You just can't trip this fellow 
Einstein up can you?!

'Can we work out the angle β?' he asked.

'Yes. Easily. It doesn't matter which point of view we adopt, the 
answer will be the same. If we look in detail at the instant at which, to 
me, the penny just enters the hole, the situation will look like this:

α β

kd

d

h

so
h = (d − kd )tan α = kd tanβ

tanβ =
1−k

k
tan α =

1 − k
k

×
u
v

'Well, that's pretty cool! I would never have thought that things could 
get tilted by their vertical motion.'

'But they do.' said Betty.

'Wait a minute. I have just thought of something. We agreed at the 
start that the penny was horizontal before it dropped. How can it 
suddenly tilt upwards when it starts to move?'

'You have put your finger on an excellent point there, and the answer 
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is best explained using a related paradox which I call the Carrom board 
paradox. Would you like to hear about it?'

'Go on then,' said Arthur. 

'Suppose that you are playing Carrom or some such game where a 
disc, sliding along a table falls through a hole in the table.'

'I get it! From the point of view of the people playing the game, the 
penny is shrunk and it will easily fall through the hole; but to an ant 
sitting on the penny the hole is shrunk and there is no way it can fall 
through.'

'Correct. And can you see how the paradox is resolved?'

'Well, no, I can't. The disc is sliding along the table so it cannot 
possibly tilt – not until it reaches the edge of the hole at any rate. And if 
the hole is shrunk to less than half the width of the penny, the front of 
the penny will reach the other side of the hole before the centre of 
gravity of the penny has reached the edge.'

'And yet the penny does fall through the hole.'

'I don't see how it can.'

'Suppose, for the sake of argument,' said Betty 'that in the table frame 
the penny (which is shrunk to half the width of the hole) stays horizontal 
the whole time but at the instant that the rear of the penny passes the 
edge of the hole – i.e. at the moment that the penny becomes 
unsupported – it immediately acquires a small vertical downward 
velocity.'

'OK. But I have just pointed out that at this instant in the penny's 
frame, the penny is bridging the gap.'

'And there is your error.'

'What do you mean?'

'In the table frame there is an instant at which the whole penny 
acquires a vertical velocity – but events which are simultaneous in one 
frame are not simultaneous in another. In the penny frame, the front of 
the penny starts to move downwards before the back of the penny has 
got to the edge of the hole like this:'
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'You mean the penny bends?' said Arthur incredulously.

'Exactly that.'

'But surely that is absurd. A penny can tilt but it can't bend.'

'Well according to the ant, it doesn't bend – but to the people playing 
the game it does. It is just another of those apparent distortions like 
length contraction which affect things in motion.'

'But if the penny was made of some brittle material like glass it 
would break!'

'Possibly.'

'But from the point of view of the players, the penny is simply 
shrunk and it will just fall through the hole without breaking. That is a 
clear contradiction.'

'Perhaps not.'

'Why not?'

'If we are not careful we are a liable to confuse here what happens in 
an ideal world with what might or might not happen in the real world. 
Firstly, the penny is not bent it is sheared. Secondly we must assume 
that the penny has a finite thickness (otherwise there is nothing to 
shear). Thirdly we must assume that the vertical acceleration is very 
large but finite. In this case, the shearing will be gradual, not sudden, 
and will progress from right to left along the penny.

'Now if we are to apply the usual laws of elasticity to this object, it is 
obvious that we can only apply them with consistency in the frame in 
which the object is at rest. (Nobody would suggest that a space ship 
travelling at a constant relativistic speed is under any actual strain as a 
result of its length contraction).

'Now in the ant's frame, the whole penny suddenly begins to 
accelerate to a relativistic speed while staying horizontal the whole time. 
When the penny has acquired a relativistic speed in the vertical direction 
it will be length contracted in thickness. Some authors argue that this 
contraction is merely a change in coordinates and will have no physical 
consequences. I, myself, believe that, while a constant length 
contraction has no physical consequence, a changing length contraction 
does and that the acceleration will set up vertical strains in the penny 
which may be sufficient to cause it to break.'
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'I can't say that I am entirely happy with that explanation, but I 
suppose it will have to do for the moment,' said Arthur, 'after all, I agree 
that the whole situation is pretty unrealistic anyway.'

Author's note: The whole question of whether the ordinary rules of 
physics can be applied to accelerated frames of reference is a minefield 
and there is still much disagreement as to the correct way of applying 
the rules. Further discussion of this issue will be found in the chapters 
on 'The Broken Rope' and 'The Space Station'.
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The Past and Future Present
The pole in the barn paradox and the paradoxes of the penny and the 

hole are puzzling because we find it very difficult to accept Betty's 
statement that 'events which are simultaneous in one frame are not 
simultaneous in another'. There seems to be some fundamental 
illogicality here which goes far beyond rulers shrinking or clocks 
running slowly. If in one frame of reference A precedes B how can there 
be another frame in which B precedes A? Indeed – if A was the cause of 
B then surely B cannot also cause A?

It is important therefore to sort out what kinds of events can be 
reordered and which cannot. Lets simplify things by concentrating on 
motion in one direction only and plotting a graph of the motion of an 
object – a space ship, say – by plotting its position on the horizontal axis 
and time vertically – like this:
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The red line could represent Albert's journey to a Alpha Centauri at a 
constant speed of half the speed of light. A line like this is called a 
'world-line'.

Four 'events' (points in space and time) are marked on the graph. O is 
the origin (0, 0)15 and represents the point when Albert sets off. A is the 
point in space and time when he reaches his destination. Since Alpha 
Centauri is 4 light years away, he will get there in 8 years and according 

15 In line with usual practice we shall always put the temporal component first. 
Note, however, that this is slightly at odds with the normal convention of 
placing the X coordinate first.
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to Ludvig at any rate, the coordinates of A are (8, 4).  (We shall not be 
concerned with Albert's view of the situation here.)

B represents the coordinates of the star at the time Albert sets out 
(0, 4) and C represents the coordinates of his stay-at-home brother 
Ludvig at the instant Albert reaches the star. (8, 0)  In diagrams like this 
we usually arrange for the speed of light to be represented by a 45° line 
and if we work in years and light years, we can talk the speed of light 
being equal to 1.

Now it happens that, at the instant Albert leaves Earth, a mutual 
friend Klara passes Earth in a fast spaceship travelling in the same 
direction so at this instant, her coordinates are also (0, 0). She is 
travelling at 60% of the speed of light so the relativistic factor 

k = √1 − 0.62
= 0.8 and in her frame of reference, the coordinates 

of Albert's arrival at Alpha Centauri are:

x ' =
x − vt

k
=

4 − 0.6×8
0.8

= −1 light years

t ' =
t − v /c2 x

k
=

8 − 0.6×4
0.8

= 7  years

(Note that the position coordinate is negative because she is 
travelling faster than him and has left him behind.)

Every event in Ludvig's frame has a corresponding coordinate in 
Klara's frame. We can visualise the mapping between the two frames by 
superimposing a grid representing Klara's coordinate system (in black) 
on top of Ludvig's (in brown) as shown below.

Notice how Klara's spatial axis (labelled Klara's 'now') has been 
tilted anticlockwise and the temporal axis (labelled Klara's 'here') 
clockwise by the same degree – like a pair of scissors. The point (8, 4) 
in Ludvig's frame has become the point (7, –1) in Klara's. Note also how 
points along the red line have transformed into points along the red line. 
(e.g. (4, 4) in Ludvig's frame has transformed into (2, 2) in Klara's 
frame). This is because, of course, both Ludvig and Klara will calculate 
the same value for the speed of light.
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Klara's spatial axis contains all the points with coordinates like (0, x). 
In other words this line represents all those events which, to her, are 
happening 'now'. Of course, Ludvig's 'now' is the horizontal axis. What 
this means is that, even though at time  t = 0 Klara and Ludvig are in the 
same place (Earth), they must differ as to which events happening 
elsewhere in the universe are happening at the same time.

If Klara were to move at the speed of light, her spatial and temporal 
axes would coincide along the red line but as long as her speed is less 
than the speed of light, she can make her 'now' line point anywhere 
inside a cone which is defined by the two red lines shown opposite.
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Ludvig's 'now'

Klara's (and Ludvig's)
 absolute future

Klara's future present

Klara's past present

Klara's (and Ludvig's)
 absolute past

Klara's 'now'

X

Remember, at the instant depicted in the diagram, both Klara and 
Ludvig are in the same place (at the origin) but Klara is moving rapidly 
to the right. By altering her speed Klara  can make her 'now' line point 
anywhere within the grey areas. She cannot, however, make her 'now' 
line cross into the white areas. Events which occur in the white are 
above her 'now' line are in her (and Ludvig's) absolute future. These are 
the events which they can expect to influence. Events which took place 
in the white area below the 'now' line occurred in her (and Ludvig's) 
absolute past. These are the events which could, potentially, have 
influenced things happening at the origin.

The grey areas contain all those events which cannot affect or be 
affected by something which happens at the origin because to get from 
one event to the other, a causal influence would have to travel faster 
than light. Since these events are neither in the future nor in the past, 
they are, in a sense, all part of Klara's and Ludvig's 'present'. Events in 
the light grey area are all above Klara's 'now' line and are therefore in 
her potential future. I like to call these events Klara's 'inaccessible 
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future' because Klara cannot do anything about them. Alternatively we 
could call them Klara's 'future present'. Similarly the events in the dark 
grey area (like the event X which represents the explosion of a 
supernova) appear to her to have already happened. They are in her 
'inaccessible past' (because nothing that happened then could have 
possibly influenced her present situation) or, if you prefer, her 'past 
present'.

But from Ludvig's point of view, the event X hasn't happened yet 
because it is in his future present. But the argument over whether event 
X has or has not happened yet is academic because there is no way in 
which Ludvig can possibly stop it happening (he can't even get there in 
time!), nor is there any way in which Klara can claim that the event can 
cause any change in her life because light from the explosion has not yet 
reached her.

One curious consequence of all this is the fact that you can 
apparently make time go forward or backward on a distant star at will. 
For example, suppose that Ludvig has a friend on Alpha Centauri and 
that they have agreed to celebrate the millennium at exactly the same 
time. In order to synchronise their clocks they have sent signals to each 
other and have set their clocks accordingly making due allowance for 
the fact the the signals take 4 years to travel from one to the other. Each 
are now agreed that the millennium will take place on Earth at the 
coordinate (0,0) and on Alpha Centauri at (0, 4). Note that, since there is 
no relative motion between them, they share the same reference frame. 

In Klara's frame of reference, however, the coordinates of the 
millennium on Alpha Centauri are:

x ' =
x − vt

k
=

4 − 0
0.8

= 5  light years

t ' =
t − v /c2 x

k
=

0 − 0.6×4
0.8

= −3  years

In other words, according to Klara, the millennium on Alpha 
Centauri happened 3 years before the millennium on Earth! (when she 
was still 5 light years away from that star). Because Klara's 'now' line 
has been tilted upwards, events occurring on stars in front of her seem to 
be shifted backwards in time (and events behind her, forwards) by an 
amount which is equal to 3 years for every 5 light years. 

In general, we can say that, if you move towards a star which is a 
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distance d in front of you (as measured in the frame in which the star is 
stationary), time will appear to jump forwards (causing events to appear 
to have happened earlier) by an amount equal to  dv/c2.

Now the Earth is rotating round the sun at a speed of about 0.0001c. 
What this means is that, when we are at that time of year when we are 
approaching a distant galaxy like the Andromeda galaxy which is 2.5 
million light years away, time on the galaxy advances by 2,500,000 ×  
0.0001 = 250 years! 6 months later, time will have slipped back the 
same amount. Just walking towards a really distant galaxy will change 
the time on the galaxy significantly – from your point of view that is!

Armed with this new idea, it is possible to explain the Twin's 
Paradox in a completely new way. You may remember that Albert takes 
3 years to reach his destination, Alpha Centauri. During the journey he 
argues that his brother's clocks should be running slow because of their 
relative motion by a factor 0.6 and that when he reaches the star, his 
brother's clock should read 3 × 0.6 = 1.8 years. The same is true on the 
return journey so he might reasonably expect his brother to be only 3.6 
years older when he gets back home. What this analysis leaves out, 
however, is the instantaneous change in Albert's 'now' when he turns 
round. Since his speed changes from –0.8 to +0.8c, time back on Earth 
will jump forward by 2 × 4 × 0.8 / 12 = 6.4 years which, together with 
the 3.6 years already accounted for, adds up to 10!

Now you may be thinking that this is completely absurd. How can 
Albert change the time on Earth by just by turning round reversing his 
direction of motion? But the question is misleading. Suppose you start at 
a tree and walk 100 m away from it. The tree is now 100 m behind you. 
Turn round. Suddenly the tree is 100 m in front of you. It is nonsense to 
ask 'how can you move a tree which weighs several tons and is rooted to 
the ground, a distance of 200 m in the blink of an eye?' All that has 
happened is that you have changed your frame of reference. It is the 
same with Albert. All that has happened is that he has stepped off a 
frame of reference which is moving away from Earth onto a frame of 
reference which is moving towards Earth.
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Interval
No, this is not the point where I hand out ice creams! The 'interval' 

between two events has a very specific meaning in Special Relativity.

In a non relativistic world, two events are separated both in distance 
and in time and two observers in relative motion will always agree on 
both of these values. They are absolute. But in Special Relativity, space 
and time get a bit mixed up and two similar observers will not agree on 
either the distance between the events or the time interval between them 
(or even, as we have seen, in some cases, the order in which the two 
events occur.)

There is, however, a simple quantity which they can agree upon 
which is the quantity

I = √ t2
− x2

/c2

which would have the dimensions of time. (We are assuming here a 'one 
dimensional' universe in which y and z are zero.)

For example, we have seen how in Ludvig's frame, Albert arrives at 
his destination at (8, 4) but in Klara's frame his coordinates on arrival 
are (7, –1). According to Ludvig, therefore, the interval between his 
leaving Earth and arriving at Alpha Cantauri is

√82
− 42

= √64 − 16 = √ 48 = 6.93  (Remember, we are working 
in years and light years so c = 1.)

Klara's calculation goes like this:
√72

− (−1)
2

= √49 − 1 = √ 48 = 6.93 which is exactly the same.

Lets calculate the interval between the origin and the explosion of 
the supernova at X. Let us suppose that in Ludvig's frame the explosion 
occurs 7 light years away and 2 years in the future (see the diagram on 
page 53). Ludvig's calculation goes: 

I = √22
− 72

= √4 − 49 = √−45 = 6.71 i . (The imaginary 
answer merely indicates that the interval is space-like.)

In Klara's frame the event occurs 7.25 light years away and 2.75 
years in the past. Her calculation goes as follows: 

I = √2.752
− 7.252

= √7.56 − 52.6 = √−45 = 6.71 i

In ordinary Euclidean space, a map of all the points equidistant from 
the origin is, of course, a series of concentric circles. But in spacetime, a 

56



map of events at equal intervals from the origin form a series of 
hyperbolae with some regions being an imaginary (time-like) interval 
away from the origin.

   

In three dimensions we define the 'interval' between any event (x, y, 
z, t) and the origin to be 

I = √t 2 − (x2 + y 2 + z2)/c2 16

It is, of course,the fact that that the spatial components are subtracted 
instead of added which makes all the difference between the behaviour 
of distances in Euclidean space and intervals in spacetime.

16 You could equally well make the spatial components positive and the 
temporal component negative (and many authors do) but this makes the 
interval between events which occur approximately in the same place (a 
condition which is true of virtually all common events) imaginary, not real. 
In addition, I have chosen to divide the expression by c so that interval has 
the units and dimensions of time. Some authors even leave the c2 factor out 
altogether. This may make sense to a mathematician who is quite prepared 
to say that c = 1 and pretend that distances and times are no different, but it 
is anathema to a physicist like myself.
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The Broken Rope
or Bell's Spaceship Paradox

'I am still troubled,' said Arthur one day 'about the question of 
whether all these effects, like pennies bending and trains contracting, are 
real or not.'

'Yes, they are real – in the appropriate frame of reference at any rate,' 
said Betty.

'Yes I can see that; but would the bending or contraction have any 
physical consequences? For example, suppose I am sitting in a 
spaceship on the launch pad, and then I accelerate up to light speed – 
will I feel anything? Will I feel as if I am being squashed?'

'No, absolutely not. Except for the force pressing you back into your 
seat due to the acceleration, everything will just look and feel perfectly 
normal.'

'But from your point of view, you see me becoming more and more 
squashed.'

'Yes, but that's only of academic interest really and due to the way 
light behaves when I try to measure the length of your space ship.'

'So length contraction is just an illusion.'

'No, it's not just an illusion. From my point of view, your space ship 
really does get shorter. Look, suppose you tied two identical spaceships 
together with a long rope and arranged for the two spaceships to start 
accelerating at the same instant.'

'How would you do that?' asked Arthur.

'Well suppose Albert and Ludvig were piloting identical space ships 
and that Klara, positioned exactly halfway between them, flashed a 
light. The light would reach them both at the same time and the race 
would begin.'

'I see what you are getting at. The two spaceships are always 
travelling at exactly the same speed so the distance between them will 
always remain exactly the same and the rope will not break.'

'Right. But when they got up to a sizeable fraction of the speed of 
light, the rope would be length contracted in Klara's frame and it would 
have to break.'
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'I don't buy that. Surely the distance between the two space ships 
would also be length contracted so the rope would stay intact.'

'You have put your finger on a very subtle point there. When we talk 
of distances being length contracted are we talking about objects like 
spaceships and rulers getting shorter within space or are we talking 
about space itself getting smaller. Or are we talking about something 
else entirely?'

'I don't know. You tell me.'

'Let's start by simplifying things so that we don't have to worry about 
things like acceleration. Let's suppose that at the instant the two brothers 
see the light signal, they instantly start moving at a fast speed – say 60% 
of the speed of light. Let us also suppose that they are initially 1000 m 
apart.'

'OK. How about it if we plotted one of those time/space diagrams?' 
suggested Arthur.

'Excellent idea,' said Betty.

As usual, Time is plotted on the vertical axis and position on the 
horizontal axis. The lines A and L are Albert's and Ludvig's world lines 
as seen by Klara and at time t = 0 Albert and Ludvig start moving.

The red 45° lines represent potential light rays. The thick horizontal 
blue line represents the distance between the space ships – and hence the 
length of the rope – before the ships start to move.
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'Now,' continued Betty, 'let's consider what the situation looks like 
from the point of view of someone who is travelling at just the right 
speed to catch up with Albert at the instant he starts to move. Let's call 
him Walter.

'From Walter's point of view, Albert and Ludvig are travelling 
towards him at 60% of the speed of light.'

'But won't he see them contracted?'

'Yes – excellent point. To Walter they will only be 800 m apart and 
the rope will only be 800 m long.17'

'There is something else I have realized.' said Arthur. 'Although in 
Klara's frame, Albert and Ludvig set off at exactly the same time, this 
won't be true in Walter's frame, will it?'

'Another excellent point!'

'From Walter's point of view, the light pulse which is travelling 
towards Ludvig will reach him first because he is travelling towards the 
oncoming light; whereas the light travelling towards Albert has got to 

17 At 60% of the speed of light k = √1 − 0.62 = 0.8
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chase him down the line!'

'Spot on! Now as we know, his now line is inclined upwards so he 
sees Ludvig starting to move at the earlier time t and in his frame, by 
the time he has reached Albert, Ludvig has already travelled some 
distance and the distance between the two spaceships (shown by the 
inclined blue line) is increased.18 There is therefore not a shadow of 
doubt that, in Walter's frame of reference, the rope is going to break.'

'So it must break in Klara's frame too! That proves that length 
contraction is not just some trick of perspective like the foreshortening 
of a table when looked at obliquely, it is a real effect which can have 
real physical consequences!'

'Yes, the rope will definitely break.'

'Let me get this absolutely clear. In Klara's frame, both ships move 
off at exactly the same speed at the same time and remain the same 
distance apart. So it is not space which gets contracted only objects 
within space – is that right?'

'No, not really. As we agreed, from the rope's point of view, it stays 
the same length all the time; it is the space ships which move further 
apart.'

'But you have just said that the space ships remain the same distance 
apart!'

'In Klara's frame, yes.'

'I am confused!'

'You are confused because you are still thinking of space as some 
sort of object which either can or cannot be contracted. You must try to 
get rid of this notion altogether. All that exists in space are coordinates. 
In Klara's frame the X coordinates of the two space ships increase 
linearly with time at the same rate. The difference between these 
coordinates (i.e. the separation of the two space ships in her frame) 
remains constant. The coordinates of the ends of the rope do not, 
however, accelerate at the same rate and so the length of the rope gets 
shorter.'

'That doesn't make sense. If the ends of the rope are attached to the 
space ships they have to accelerate at the same rate.'

18 It is actually the component of this line along the X axis which is increased.
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'Which is why the rope has to break.'

'But suppose the rope is only attached to Ludvig's ship. What then?' 
asked Arthur.

'We are in great danger again of trying to apply the laws of physics to 
an idealised situation which is wholly impossible in practice, but let's 
make the scenario a bit more plausible by supposing that the two ships 
accelerate at a finite rate of, say, 1G. We must also make some 
assumptions about the nature of the rope. If we assume that the rope is 
inextensible (another impossibility) then what we are saying is that at all 
times, in the inertial frame in which the rope is instantaneously at rest, 
the distance between the end points is 1000 m. If that is the case then, as 
the rope gets faster and faster, in Klara's frame it gets shorter and 
shorter. And since the front end of the rope is accelerating at a constant 
rate of 1G, we must conclude that, in Klara's frame, the rear end of the 
rope is accelerating faster than the front end. In other words it is going 
to part from Albert's ship.'

'What will Albert see then?'

'Well, since both ships start accelerating from zero, Albert will see19 
his brother start off at the same time but although Klara sees both ships 
accelerating at the same rate, Albert will see Ludvig accelerating more 
quickly than him. However you look at it, the rope is definitely going to 
break.'

'Well, I suppose I am 90% convinced,' said Arthur doubtfully.

'Think about it from Walter's perspective,' concluded Betty. 'There is 
absolutely no doubt about it from his point of view – the rope is 
definitely going to break. And although Albert and Ludvig disagree 
about the reason why the rope breaks, they will both agree that it does.' 

19 Once he has taken into account the finite speed of light, of course.
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The Red Danger Signal
The accident could have been much worse. The new High Speed 

Train was only doing half its maximum speed when it hit the facing 
points at the end of the platform and, while it derailed, it stayed upright 
and the driver and the guard – the only people on the test train at the 
time – were uninjured. The driver insisted that the home signal was 
green – a claim vigorously supported by the guard – but the signalman 
and the station master were adamant that the signal was showing red and 
that the driver should have stopped.

Later that day the station master and the guard were discussing the 
accident over a pint.

'I just can't understand it,' said the guard, ' I know I saw a green light. 
I swear it.'

'Yes.' replied his friend, 'But I have had an idea about how it might 
have happened.'

'How?'

'You know when an ambulance goes past its siren seems to dip in 
pitch?'

'Yes, it's called the Doppler effect.'

'Well, I looked it up in one of my old Physics books this afternoon 
and apparently there are two Doppler effects – the Moving Source effect 
and the Moving Observer effect – with slightly different formulas20. I 
think that one of these might solve the riddle.'

'Of the two I would guess it was the Moving Observer effect.' replied 
his friend, 'because it was the train that was moving, not the signal. 
What was the formula?'

'The book said that the wavelength of the light would appear to be 

shortened by a factor
c

c + v where c is the speed of sound and v is the 

speed of the moving observer.'

'What happens if you put the numbers in, assuming that the Doppler 
shift works in light as well as sound? I know that the train was travelling 
at 28 ms-1 when it entered the station because I was monitoring the 

20 See the Appendix for a further explanation of these effects.
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speed of the train the whole time.' said the guard.

'Because the speed of light is 100 ms-1 ' said his friend, pulling out a 
calculator, ' the shortening factor works out to be 100/128 = 0.78.'

'But do you know the wavelengths of red and green light?'

'Yes, I looked those up too. The wavelength of red light is 800 nm 
and the wavelength of green light is 600 nm.'

'Well, there you are then. That solves it. The red light was Doppler 
shifted into the green and that's why the driver and I thought the signal 
was green while you though it was red.'

'But there is a slight problem here' said the station master. '800 × 0.78 
is 625, not 600.'

'Surely that's near enough isn't it?'

'No. If the light which you saw had a wavelength of 625 nm it would 
have looked yellow, not green.'

'Well it definitely was green, I can tell you. By the way – it's your 
round I think.'

While the station master was busy at the bar, the guard had a thought 
of his own and when his friend returned with the beers he burst out with:

'I know what's wrong! We are using the wrong formula! From the 
driver's point of view it is not the train which is moving, it is the signal – 
so we should be using the Moving Source formula, not the Moving 
Observer one.'

'That's a really good point. Lets see if it checks out. If the source is 
moving towards the observer the book says that the wavelength should 

be shortened by a factor
c − v

c
which is 72/100 or 0.72.'

'That looks promising. It will be shortened more. What does the 
wavelength work out to be?'

'800 × 0.72 is 576.'

'Bummer. That's too short isn't it?'

'Yes. A light of that wavelength would look distinctly blue.'

'Well I don't know what the answer is. Let's talk about something 
else.'

So for a while the two friends chatted amiably and, inevitably, 
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consumed a few more beers. Again, it was while his friend was buying 
yet another round that the guard had another idea and when the beers 
arrived he said:

'You remember when we were working out why the paint was spilled 
in the wrong place on the train, we decided it was because when objects 
were moving, lengths were contracted. Perhaps that's why the light 
looked green. It was nothing to do with the Doppler shift, it was 
relativistic contraction.'

'Well, there is an easy way to find out if that idea is right. Lets work 
out the figures. The formula for the Length Contraction k is

√1 − v2
/c2 which equals √1 − 282

/1002
= 0.96 .'

'That's no good.'

'You're right. The wavelength works out to be 768 nm which is only 
slightly orange.' 

'Wait a minute, though' said the guard, 'what if the wavelength is 
both Doppler shifted and contracted?'

'That's not going to work. From the driver's point of view, the 
wavelength is already Doppler shifted to a wavelength of 576 nm. If it is 
contracted by a further 0.96 it will have a wavelength of 553 which is 
definitely in the blue region.'

'Well, what if we use the Moving Observer effect instead of the 
Moving Source formula?'

'Surprisingly, that seems to work. 625 × 0.96 is exactly 600 nm!'

'That's really strange. But we must be on to something here. Actually, 
I am not sure we can just apply the length contraction formula here 
anyway. That applies to things like trains and platforms, not to 
wavelengths.'

'So where does relativity come in?' asked the station master.

'I am not sure. How about this for an idea. You know we also found 
out that moving clocks run slow so from the driver's point of view, the 
atoms in the red light will be oscillating more slowly than they should...'

'But that means that, to the driver, the wavelength should look  
longer than 600 nm which would put it in the infra red and make it 
completely invisible!'

'Yes, but I am assuming that the Moving Source Doppler effect will 
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still apply.

'So what you are saying is that, to the driver, the wavelength is 
lengthened by a factor 1/0.96 and shortened by a factor of 0.72. Is that 
it?'

'Absolutely. How do the figures work out?'

'Well 800 / 0.96 is 833.3 and 833.3 × 0.72 is 600!' 

'That's it! The effect is a product of Time Dilation and the Moving 
Source effect.'

'But it seems strange that we got the same result when we used the 
Moving Observer effect and Length Contraction.'

'Well, let's see what we get if we use letters instead of numbers. 
Overall the wavelength will be shortened by a factor equal to

1
k

×
c − v

c
=

c − v

c √1 − v2
/c2

=
c − v

√c2
− v2

'But c2 – v2 can be factorised as (c - v)(c + v) so the shortening factor 

will be c − v
√(c − v)(c + v)

= √ c − v
c + v

'

'What a pretty formula! It seems to strike a very happy medium 
between the Moving Observer and the Moving Source effects' 
commented the station master, 'and the numbers check out too because 

800 × √ 100 − 28
100 + 28

is exactly 600!

'Of course, if we used the Moving Observer formula and Length 
Contraction we would get a shortening factor of

k ×
c

c + v
=

c √1 − v 2
/c2

c + v
=

√c 2
− v2

c + v

which is also equal to √ c − v
c + v

. But I still think it is better to regard 

the effect as due to Time Dilation and the Moving Source effect because 
it is only the driver who sees the change in colour and, to him, he is 
always stationary.'

The guard is correct. The driver is, by definition stationary and so 
there is no Moving Observer effect in light. On the other hand, as the 
source of light movers towards him, the wavelengths are all bunched up 
in accordance with the Moving Source effect. In addition, however, in 
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his frame of reference the atoms in the signal are vibrating more slowly 
than they would if the signal was stationary which would increase the 
wavelength. The combination of the two effects is the Doppler effect in 
light.

 But having said that, there is nothing really the matter with the 
Moving Observer plus Length Contraction alternative – as always, it 
just depends on your point of view.
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Part 2: All about Appearances
The Elastic Train

'I am fascinated by the phenomenon of length contraction,' said 
Arthur one day. 'I would love to be able to take a photograph of, say, a 
train squashed to half its length!'

'Yes – but it is worth considering exactly what the photograph would 
show.' replied his sister.

'What do you mean?'

'Well, suppose the train is 100 m long (when stationary) and that 
light travels at 100 ms-1. If the train travels at 28 ms-1 then 
k = √(1 - 0.282) = 0.96. From your point of view, therefore, the train is 
only 96 m long because of length contraction. Let us suppose that you 
are standing beside the track and you take your photo well before the 
train reaches you. When you examine the photo you notice that the rear 
of the train has just emerged from a bridge which you know is 200 m 
away. Where do you think the photo will show the front of the train?

'Well, obviously, since the train is (to me) only 96 m long the front of 
the train will be only 104 m away.' 

'I am afraid you are wrong.'

'How so?'

'How long will it take the light from the rear of the train to reach 
you?'

'200 m at 100 ms-1 that is 2 s.' answered Arthur.

'Correct. And how far will the train move in that time?'

'2 times 28 – 56 m. Hey! That means that the front of the train will 
only be 200 – 56 – 96 = 48  m away. Is that right?' 

'No, not quite. You have forgotten to take into account the time it 
takes for the light to get from the front of the train to the camera. Think 
of it like this. There is a race going on between the train and the light. 
From your point of view the light from the rear of the train is overtaking 
the train at a speed of 100 – 28 = 72 ms-1. It takes 96/72 = 1.33 s to do 
this at which point it joins light from the front of the train and reaches 
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you in a further 0.33 s. In the 1.33s it took for the light to overtake the 
train time the train travelled 1.33×28 = 37.33 m. So all we have to do to 
find the apparent length of the train is to add this to the length of the 
train. This gives us 133.33 m and on the photo the front of the train will 
be 66.67 m away..

'But that means the train will look longer not shorter! I was hoping to 
see it squashed.'

'No, it is squashed – it just looks longer.'

'What is the difference? If relativity says it is squashed, why doesn't 
it look squashed?'

'The effect we are considering here has nothing to do with relativity 
at all. The train looks longer simply because it takes longer for light to 
reach you from the back of the train than from the front, and in that 
extra time the train has moved forwards.

'Let's say you turn round and take a photo of the train as it moves 
away from you,' continued Betty. 'Now the light from the front of the 
train only takes 0.75 s to travel the 96 m along the train because the 
relative speed between the train and the light is 128 ms-1. In this time the 
train moves away from you a distance of 0.75×28 = 21 m so the train 
will look as if it is only 96 – 21 = 75 m long. Is that squashed enough for 
you?'

'I suppose. But I have thought of something else; suppose I take a 
cine film of the train passing. Surely it can't suddenly appear to shrink 
from 133 m to 75 m between one frame and the next?'

'No, of course not. It shrinks gradually as it passes you.'

'How can that be?'

'Well, consider the front of the train when it is 100 m away. Light 
from the train takes 1 s to reach you. Now consider the train when it is 
90 m away. At 28 ms-1 it takes 10/28 = 0.357 s to cover the 10 m. Light 
from the front of the train now takes 0.90 s to reach you so it looks to 
you as if the train has covered 10m in 0.9 + 0.357 – 1 = 0.257 s. This 
means that the apparent speed of the train is 10/0.257 = 38.8 ms-1! In 
other words, when an object is moving towards you, it appears to be 
going faster than it really is. (Remember, this is nothing to do with 
relativity – it is basically just the standard Doppler shift in action.)'

'What if the train is moving away?' asked Arthur.
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'Consider what happens when the train moves from 90 m to 100 m. 
The extra time taken by the light to get back to you is still 0.357 s but 
the time interval between the arrival times is now 1 + 0.357 – 0.9 = 
0.457 s and the train appears to be going at a speed of 
10/0.457 = 21.9 ms-1. Quite a lot slower.'

'So on my cine film it will show the train apparently speeding 
towards me at 38.8 ms-1; but when the front of the train passes me it will 
suddenly slow down to 21.9 ms-1; the rear of the train still looks as if it 
is travelling at the faster speed so the train will appear to shorten. Is that 
it?'

'Absolutely right. Well done.'

'Does this mean that when a radar speed trap measures the speed of 
an approaching can, it overestimates the speed?'

'No it does not. The reflected radar is Doppler-shifted up in 
frequency and the change in frequency is used to calculate the actual 
speed of the car, not its apparent speed.'

'Pity.'

'Let me just state once again, this has nothing to do with relativity. It 
is just a consequence of the finite speed of light. The formula for the 

apparent speed of an object moving towards you at a speed v is v c
c − v

and away from you is v c
c + v .'

'That's really cool. Hey – wait a minute,' said Arthur, 'there is 
something weird here. Suppose the train is travelling at half the speed of 
light i.e. v = c/2. If I plug this into your formula for the approaching 
train it looks as if the train is travelling at the speed of light!. In fact at 
speed greater than c/2 it will look as if it is travelling faster than light! Is 
that possible?'

'Yes. It only looks as if it is travelling that fast. Unlike length 
contraction which is a real effect, the change in the apparent speed of 
the train really is just an illusion.'

'What is the formula for the apparent length of the train?' asked 
Arthur.

If the train moving towards you it will appear to be l c
c − v and 
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away from you l c
c + v where l is the contracted length of the train.

Something rather interesting happens if we factor in the relativistic 
length contraction as well; the two formulae become

l √1 − v2
/c2

×
c

c ± v

which simplifies to:

l √ c ± v
c ∓ v

Putting in the figures we used earlier for a train 100 m long travelling 

at 28 ms-1 it will appear to be 100√100 + 28
100 − 28

= 133.3 m long when 

approaching and 100√100 − 28
100 + 28

= 75 m long when receding.
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Doppler Dilation
We are all familiar with the Doppler shift in frequency as an 

ambulance goes past. The effect Betty and Arthur have been discussing 
in the last chapter is exactly the same effect but as it affects distances 
rather than times. Of course, we do not normally experience the Doppler 
shift of distance in everyday life because we do not usually use pulses of 
sound to measure distance but an ultrasonic tape measure does. It works 
by sending out a a pulse of sound and timing the return signal. If you 
just measure one pulse, the tape measure will correctly calculate the 
distance to the wall at the instant the sound bounced off the wall, 
regardless of the motion of the wall. But if you attempt to measure the 
length of a flat wagon with reflecting boards mounted front and back by 
measuring the time interval between the reflected pulses, then you will 
get a Doppler-dilated answer.

In order to prove the formulae quoted in the last chapter it is 
immensely useful to draw a distance/time graph.

Path of ship

Pat
h 

of
 lig

ht

t1 t2

x

x'
Apparent path of ship

O

A

B

Time

Distance

A'

B'

A space ship is approaching the origin O at a speed v as represented 
by the solid blue line. The ship reaches the observer at time t = 0. At the 
point A, a distance x from the observer) it emits a flash of light which 
takes a time t1 to reach the observer. In this time the space ship has 
moved to the point A', but to the observer he sees it as if it was at B'. 
After a further time t2 the ship has reached the observer so, to the 
observer, it looks as if the ship has moved a distance x in a shorter time 
t2 i.e. it looks as if is is moving faster than it actually is and that when 
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the light was emitted, the space ship appeared to be at B not A.

Once we have got the diagram sorted out it is easy to do the algebra.

t 1 =
x
c

  and  (t 1 + t 2) =
x
v

  so  t 2 =
x
v

−
x
c

apparent velocity  v ' =
x
t2

= v c
c − v

x ' = v ' (t 1 + t 2) = x v '
v

=
xc

c − v

But what causes the apparent sudden change of speed as the space 
ship passes the observer? Lets draw the continuation of the diagram:

Path of ship

Path of light

t1 t2

x

x'Apparent path of ship

O

A

BTime

Distance

A'

B'

Now when the ship emits a flash of light it is travelling backwards so 
by the time it reaches the observer the ship has reached B. However, it 
only looks as if it has reached B'. so the apparent velocity of a receding 
space ship is slower then the actual speed.
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Doppler Distortion
Continuing the discussion of the previous chapter it is interesting to 

examine the apparent velocity of an object which is moving at a 
constant speed v along a line which does not pass close to the observer.

D

δxA B

θ

O'

O

-x v

Light from A takes t A =
√(x + δ x)2

+ D2

c
to reach the observer. 

Light from B takes tB =
√ x2

+ D2

c
. The time taken by the object to 

travel from A to B is t O =
δ x
v so the time interval between the 

receipt of the two pulses emitted at A and B is tO − ( tA − tB) . 

Ignoring second order terms, this works out to be 
xδ x

c √ x2
+ D2

−
δ x
v from which it follows that the apparent speed of 

the object moving from left to right is v ' = v
c

c + v sin θ
where 

sinθ =
x

√ x2
+D2 . As the object passes you the sin θ term changes 

from negative to positive and the apparent speed changes from moving 
faster than v to moving slower.

A graph of this function looks like this:
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When the space ship is a long way away and approaching the 
apparent speed is ¾ / (1 – ¾) = 3 times the velocity of light. (The 
apparent speed of approach will be faster than the speed of light 
whenever v > 0.5 c. Of course, this does not contradict Special 
Relativity because nothing is actually moving at this speed.) 

At the instant it passes the observer it appears to be going at 0.75 c 
and slows to an eventual speed of ¾ / (1 + ¾) = 3/7 c. 5 Graphs are 
shown representing different distances between the observer and the 
track of the space ship, the dark blue one being the closest.

The graph shows how velocity varies with distance. What we really 
need is a graph showing how distance varies with time. The algebra is a 
little comlicated (and can be found in the appendix) but the result is the 
rather formidable looking function: 

T =
X
v

+
1
c

(√X 2
+ D 2)

In units in which c = 1, this function looks like this:
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Reading this graph from the bottom up, the thick black line shows 
the actual position of the object the object moving at constant speed 
from left to right. The coloured lines show where the object appears to 
be at each instant of time, allowing for the delay caused by the finite 
speed of light. The object enters on the left, appears to move rapidly to 
the right (at 3 times the speed of light), slows down as it passes the 
origin and continues to the right at a slower speed.

The greater the distance D the more the object seems to lag behind.

We shall now consider what shape an object will appear to be if it is 
photographed as it moves by. First consider a ruler, perpendicular to the 
line of velocity which moves past the observer, the ends of the ruler 
being a distance D above and D below the centre line. At the instant the 
centre of the ruler passes the observer, the ends of the ruler appear to lag 
behind because the light that currently reaches the observer was emitted 
when the ruler was some distance to the left of the origin.
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The vertical (blue) lines represent the actual position of the ruler at 
five instances of time. In the time it takes for light from the end of the 
ruler A to travel the vertical distance D the ruler has travelled a 
horizontal distance X so the observer at the origin O sees the end of the 
ruler at A. By the same token he sees the point B on the ruler at the point 
B', C at C' and D at D' etc. In other words, he sees down the whole 
length of the ruler as straight but angled at an angle θ such that sin θ = 
v/c. Likewise the bottom half of the ruler also appears angled 
backwards, the whole ruler therefore looks bent sharply in the middle as 
shown by the thick black line in the above illustration.

The next question is – what does the ruler look like at times other 
than T = 0. Rearranging the equation on page 75 and solving for X we 
get:

X =
c2 vT − v √c2 v2T 2

+ D2
(c2

− v2
)

c2
− v 2

(When T = 0, X must be negative for all non-zero values of D so we 
need the negative root here.)

The graph of this function looks like this:
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As the ruler approaches the observer at speed, it becomes more and 
more curved like a boomerang; at the instant it passes the observer it 
appears to be bent sharply in the middle; then as it recedes more slowly 
it straightens out again.

Using this diagram as a guide we can picture what the observer sees 
as a rectangle hurtles past:

The apparent shape of a moving rectangle

The rectangle is convex at the front and concave at the rear; if 
shortens as it goes past the origin. The diagram can be rotated around 
the X axis to give an impression of what a rectangular box or a cylinder 
would look like. (Once again it is necessary to point out that this is NOT 
a relativistic effect – it is just a Doppler effect. Factoring in a length 
contraction does not change anything significant – only the aspect ratio 
of the rectangle.)

The Doppler distortion effect was first brought to our attention by 
two papers in the late 1950's independently by Terrell and Penrose. 
Subsequently many authors have expressed surprise that the apparent 
distortion of a moving object took so long to be recognised, but the 
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reason it took 50 years for the effect to be noticed is that the effect is, 
frankly, only of academic interest. It is just an illusion and has no 
practical or theoretical value. (In fact, I am willing to bet that, since the 
effect has nothing to do with relativity, it will have been described as a 
curiosity long before Einstein. Maybe by Doppler himself.)

Here is a picture of a rectangle moving past an observer at a small 
distance, taken at the instant the centre of the nearer face of the 
rectangle (looks as if it is) is perpendicular to the observers line of 
sight.;

Note that both the nearer and the further faces of the rectangle 
remain parallel at all times to the axis. (The rectangle could be a flat 
wagon running on rails) but owing to the finite speed of light the further 
face of the rectangle looks as if it is lagging behind. In fact, the observer 
will be able to see the rear face of the rectangle in spite of the fact that it 
would ordinarily be obscured by the nearer face.

Now, owing to a pretty coincidence, it turns out that, when the length 
contraction is applied, the apparent angular sizes of the near and rear 
faces are the same as they would be if the rectangle had been rotated. 
The effect has therefore come to be known as Terrell Rotation. The 
above diagram makes it clear, however, that the rectangle is not rotated 
– it is distorted. Wikipedia has the following illustration of what a cube 
really would look like as seen from the origin.
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A Doppler distorted cube

On the left is a perspective representation of what the cube really is – 
squashed. On the right is what a photograph would show. Note carefully 
that all the horizontal edges of the cube remain horizontal. If the cube 
were rotated, these lines would be inclined. It is true that the cube looks 
rotated in a way, because we can see the left hand side and our brains 
automatically infer that the faces are the same size; but in truth the cube 
is not rotated, it is sheared.
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Part 3: Mass and Energy
Mass and Momentum

When they were children Albert and his twin brother Ludvig had 
been given two lovely big beach balls and with them they had developed 
a skilful game. Each boy would throw the ball towards the other and the 
game was to try to catch the balls as they bounced back. In fact they got 
so skilful they could do it with two footballs (which are smaller and 
heavier) as well. One day they tried playing the game with a beach ball 
and a football. The first time they tried it, the beach ball bounced back 
off the football – rather fast, actually – and the football just dropped to 
the ground. Ludvig, who was throwing the football, realised that he was 
throwing it too hard and that in order to make both balls bounce back at 
the same speed as they were thrown the lighter beach ball would have to 
be thrown faster than the heavier football. 

Later, when the two boys learned about the conservation of 
momentum it became clear that because the football had twice the mass 
as the beach ball the beach ball had to be thrown twice as fast as the 
football.

Now, as fully qualified space pilots, Albert and Ludvig decided to 
play their old game but with a new twist. They would each throw a 
rubber projectile sideways out of their respective space ships as they 
passed each other at speed and try to recover them when they bounced 
back.

On the day of the experiment Albert and Ludvig checked to make 
sure that the two projectiles had exactly the same mass and that the 
firing mechanism caused the projectiles to be thrown out with exactly 
the same speed. They synchronised their clocks and measuring 
instruments and  took off leaving their friend Klara back on Earth to 
take a cine film of the event.

Soon Albert was approaching Earth from the left at a good speed 
with Ludvig approaching from the right at the same speed. At the 
appointed moment both space ships ejected their projectiles and, with 
perfect precision, the balls bounced off and were captured by the nets 
trailing behind the two ships. All of this was videoed by Klara and later, 
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over a few pints, Albert and Ludvig sat down to watch the video. This is 
what they saw21:

'Fantastic' said Albert; 'Spot on!' said Ludvig as they performed a 
celebratory High-Five.

'Mind you – that's not what I saw.' said Ludvig. 'From my point of 
view, my ball went straight up and down while your ball whizzed past at 
great speed.

'Yes – I saw exactly the same.'

'And another thing.' said Ludvig, 'I saw you release your ball well 
before I did.'

'But I saw you release your ball before me!'

'You're both right.' said Klara. 'Each of you think that your brothers 
clocks are running slow so each of you will see everything happening on 
your brother's ship in slow motion.

'So from my point of view, Albert's ball was travelling slower than 
mine. Is that right?'

'Yes', replied Klara, ' and from his point of view yours was travelling 

21 Of course, this is not what the video actually recorded. Because of Doppler 
Dilation discussed in the previous chapter, Klara will have seen the balls 
approaching at high speed and slowing down as they went past. In 
accordance with long tradition, the diagram shows what Klara infers was 
happening, not what she saw. What is important about the diagram is the 
symmetry in the behaviour of the two balls. In the subsequent discussion 
between Ludvig and Albert the word 'see' actually means 'infer'.
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slower than his.'

'But – hang on, what about the conservation of momentum?' said 
Albert.

'Well, obviously it doesn't apply in this situation' replied Ludvig.

'No, it's got to apply' said Klara. 'The law of conservation of 
momentum is one of the most fundamental laws of Physics. You can't 
just ditch it like that.'

'But my ball has momentum mv while Albert's ball has momentum 
kmv which is less, so, like the football and the beach ball, the symmetry 
is lost and the balls shouldn't bounce symmetrically.'

'Well the situation has got to be symmetrical because I can argue in 
exactly the same way' Albert pointed out.

'No, I think the answer is a lot more interesting.' said Klara

'How so?' said Albert.

'Well, there is an asymmetry in the situation from your individual 
points of view. To each of you, your own ball is pretty well stationary 
(apart from its small sideways velocity) but your brothers ball is 
whizzing past at high speed.

'You both agree that your brothers ball is moving sideways more 
slowly then your own; so in order to compensate for that it is obvious 
that the mass of the ball must be increased in the same proportion by 
virtue of its relativistic forward speed.

'What I am saying is that a ball which when at rest has mass m must 
have mass m/k when travelling at speed. Now the k's will cancel and the 
law of conservation of momentum will be upheld.'

'Well that's a cool idea.' said Albert. 'Is there any evidence that mass 
increases when thing move really fast?'

'I don't know of any.' said Klara.

'I do.' said Ludvig. 'I have noticed a strange thing when Albert is 
accelerating his spaceship. Even though he has the warp drive on full 
power the whole time I notice that the acceleration drops off more and 
more the faster he goes.'

'Yes, but that's just because Special Relativity forbids any object 
from going faster than light.' said Albert

'It's not just a question of forbidding you to go faster than light. I see 
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now that as you go faster, the mass of your spaceship increases and so 
the same force produces a smaller and smaller acceleration.'

'Well, that's not how I see it.' replied Albert. 'When I have my rockets 
on full power I feel a constant acceleration and I just go on getting faster 
and faster.'

'You mean you can go faster than light?'

'No, of course not.'

'Well if, as you say, you go on accelerating at the same amount, all 
the time there must come a point, according to you, when you are 
travelling faster than light.' said Ludvig.

'Hmm, I see your point.'

'You two are talking at cross purposes because you have forgotten to 
specify what frame of reference you are adopting.' said Klara. 'Ludvig is 
quite right to say that from his point of view, your speed increases more 
and more slowly because from his point of view the mass of your 
spaceship is increasing.

'You, Albert, are also correct is saying that from your point of view 
your acceleration is constant. But, Ludvig, you are wrong to say that this 
constant acceleration will result in Albert going faster than light because 
velocities do not add up linearly.'

'Yes, I had forgotten that.'

'But how does all this tie in with the conservation of energy?' asked 
Albert.

'Very good question' replied Klara.
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Mass, Energy and Momentum
The formula for the relativistic increase in mass for an object of rest 

mass m moving with a speed v is:

M =
m
k

=
m

√1 − v2 /c 2

In text books on Relativity this is usually written as γm where 

γ =
1

√1 − v2
/c2 . Unlike k which is less than 1, γ22 increases from 1 

to infinity as the speed reaches the speed of light.

Now the kinetic energy of an object of mass m moving with a non-
relativistic speed v is given by the formula ½mv2 and you might be 
forgiven for thinking that the kinetic energy of an object moving with a 
relativistic speed would therefore be ½γmv2.Unfortunately this turns out 
to be incorrect. The correct expression for the kinetic energy of an 
object of rest mass m moving at a relativistic speed is very simple. It is

KE = mc2( γ − 1)

At first sight this looks very different but let's see what happens if we 
unpack it a bit (using a bit of mathematical sleight of hand called the 
Binomial Theorem):

KE = mc 2( 1

√1 − v2
/c2

− 1)
= mc2(1 +

1
2

v2

c2
+

1
6

v4

c4
+ ... − 1)

=
1
2

mv2
+

1
6

mv4

c2
+ ...

When v is small only the first term counts and this is ½ mv2 as 
expected. But we see that there are a whole lot more terms which get 
more and more significant as v approaches c. This is another reason why 
Albert cannot reach the speed of light in his space ship. He would need 
an infinite amount of energy.

Now let's have a closer look at the equation KE = mc2
(γ − 1)

again. If we rearrange it a bit we get

22 γ is the Greek letter gamma.
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E = γ mc2 = mc2 + KE

 All three terms have the dimensions of energy but what is the 
significance of each?

γmc2 is the sum of two energy terms so it makes sense to call this 
term the 'total relativistic energy' of the object. This increases with 
speed and becomes infinite when the speed reaches the speed of light.

mc2 does not depend on the speed as m is the mass of the object when 
it is at rest so we might reasonably call this the 'rest-mass energy' of the 
object.

We now have a perfectly reasonable proposition: The total 
relativistic energy of an object is the sum of its rest-mass energy and its 
relativistic kinetic energy and is equal to γmc2. There is nothing in the 
mathematics that says that the rest-mass energy actually exists or that 
we could harness it for purposes good and evil but Einstein speculated 
that it was so and he was proved spectacularly right on the 16th of July 
1945 in the deserts of New Mexico.

Now in the last chapter, Albert and Ludvig discovered that, in order 
to preserve the law of conservation of momentum, it was necessary to 
assume that the mass of an object increased as it got faster and that its 
relativistic momentum p was not just mv but mv/k – or, as it is more 
usually written, γmv. We have just found out that the total relativistic 
energy E of a moving object is γmc2. If we write these out in full we get:

p =
mv

√1 − v2
/c2

E =
mc2

√1 − v 2
/c2

Eliminating v from these two equation is a bit messy but the result is 
one of the most important equations in Relativity:

E2 = m2 c4 + p2 c 2

which gives us the precise relativistic relationship between energy and 
momentum for any object. (Note that if the object is stationary, p = 0 
and E = mc2.) 

At first sight, this equation looks really strange. For objects moving 
at non-relativistic speed we have

KE = 1/2 mv2 and momentum = mv

which means that, in general KE = 1/2 p2
/m which looks nothing like 
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the equation on page 86.

We must, however, remember the E is the total relativistic energy, 
not the kinetic energy. To a first order approximation we can put

E = mc2
+ KE

in which case

E2
= (mc 2

+ KE )
2

= m2c4
+ 2mc 2 KE + KE 2

Again, to a first order approximation we can ignore the KE2 term and 
by putting KE = 1/2 p2

/m we get the equation of page 86 so it all 
checks out.

What happens if we apply this equation to light itself?

According to Quantum Theory, light is a stream of particles called 
photons which have zero rest mass and whose energy is related to their 
frequency ν and wavelength λ by the equation:

E photon = hν = hc /λ

where h is Planck's constant.

Now since photons have zero rest mass we can put m = 0 into the 
energy/momentum equation from which we get:

Ephoton = pphoton c

from which we can deduce that photons must also possess momentum, 
given by the equation:

p photon = h/ λ = hν/ c

The energy of a photon of visible light is of the order of 3 × 10-19 J 
and a powerful torch emitting 3 W of power is producing about 1019  
(10 million million million) photons every second. The momentum of 
one of these photons is E/c =  3 × 10-19/3 × 108 = 10-27 kg m s-1 and the 
total momentum generated every second is therefore about 10-8 kg m s-2 
or N. When a fireman holds a hose emitting a jet of water, he has to hold 
very tightly because the rate of change of momentum of the water is 
translated into a reaction force which he must oppose. When you hold a 
torch, you too, much resist the force23 generated by the issuing photons.

23 10-8 N is about the weight of a grain of dust!

87



Albert's Problem 
'Do you remember that experiment Ludvig and I did with the two 

projectiles?' said Albert one day as he was chatting to Klara in the 
Spaceport lounge.

'You mean when you threw two projectiles out sideways and they 
bounced off each other?'

'Yes, That's the one. We decided that, in order to preserve the law of 
conservation of momentum, the mass of a moving object had to increase 
by a factor of 1/k' (see page 83)

'Well, I have been doing a bit more reading' continued Albert, 'and I 
found out that physicists usually use γ rather than k where γ = 1/k and 
that the formulae for the momentum and energy of a mas m moving at a 
relativistic speed are:

Relativistic momentum = γmv
Relativistic kinetic energy = mc2

(γ − 1)
 '

'That's a rather strange formula for relativistic energy' commented 
Klara, 'but I suppose it makes some sense. When an object is stationary, 
γ = 1 so the kinetic energy = 0.'

'I agree – but it seems to check out; at least usually.'

'How do you mean?'

'Well I wondered what some simple interactions would look like 
from a moving spaceship so I have done some calculations using some 
simple numerical examples. Shall I show you?'

'Yes, I am intrigued.'

Alberts first example

A mass m is travelling at 60% of the speed of light ( γ = 1.25) and 
collides with a mass 2m travelling in the opposite direction with just the 
right momentum so that both masses bounce off each other elastically 
with equal speeds.

0.6 v
21
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In order for the masses to bounce back symmetrically, they must 
have equal and opposite momentum so, taking the speed of light to be 1 
and the masses to be 1 and 2 units respectively and using the relativistic 
formula for momentum:

1.25 × 0.6 =
2v

√1−v2

from which we can calculate that v must be equal to 0.351.

Now the question is, what does this situation look like from the point 
of view of someone in a space ship? For simplicity, let us suppose that 
the ship is moving at 60% of the speed of light from left to right. In 
other words, the smaller mass is stationary and the larger mass is 
moving at a speed which is the relativistic sum of 0.351 and 0.6. This 
works out to be 0.786 (using the equation for the relativistic addition of 
velocities derived on page 42). So in this frame the situation looks like 
this before the collision:

0.786
21

and like this after the collision:

v
1 v

2
21

We can work out the values of v1 and v2 by simply adding 0.6 to the 
bounce back speeds (again using the relativistic formula). This gives us 
v1 = (0.6 + 0.6)/(1 + 0.6×0.6) = 0.882 (moving from right to left) and v2 
= (0.6 – 0.351)/(1 – 0.6×0.351) = 0.315 (also moving from right to left 
because the space ship is moving faster than the mass).

We can now check to see if, in the space ship frame, momentum is 
conserved.

First we must calculate the γ factors:

γ(0.786) = 1.618
γ(0.882) = 2.122
γ(0.315) = 1.054
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Total momentum before the collision = 1.618 × 2 × 0.786 = 2.54
Momentum of small mass after the collision = 2.122 × 0.882 = 1.872
Momentum of large mass after the collision = 1.054 × 2 × 0.315 = 

0.664
Total momentum after the collision = 1.872 + 0.664 = 2.54

So everything checks out nicely.'

'What about the kinetic energy? Does that check out too?' asked 
Klara.

'Well obviously it checks out in the stationary frame because the 
speeds of the two masses remain unaltered. In the space ship frame the 
calculations go like this:

Total relativistic KE before the collision = 2 ×(1.618 – 1) = 1.24
Relativistic KE of small mass after the collision = 2.122 – 1 = 1.122
Relativistic KE of large mass after the collision = 2 × (1.054 – 1) = 

0.108
Total relativistic KE after the collision = 1.122 + 0.108 = 1.23

So, to the accuracy of my calculation at any rate, this checks out too.'

'Well, that's what we should expect isn't it?'

'Yes, but I ran into a problem with my next example.'

'How so?'

Albert's second example

'Consider a mass m travelling at 60% of the speed of light colliding 
with and sticking to a second mass m. This is a simple example of an 
inelastic collision. We still expect momentum to be conserved so we can 
calculate the subsequent velocity of the two masses. In fact, the 
calculation is numerically the same as before and the velocity works out 
to be 0.351 whose γ factor is 1.068

Since the collision is inelastic, we can expect some KE to be lost and 
this is, in fact the case.

Total relativistic KE before the collision = 1.25 – 1 = 0.25
Total relativistic KE after the collision = 2 × (1.068 – 1)  = 0.136

Total energy lost as heat etc. = 0.25 – 0.136 = 0.114'

'So what is the problem?' asked Klara.

'Well, in the space ship frame, the fist mass is stationary while the 
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second is approaching at 0.6c. So the relativistic KE is exactly the same 
as before – 0.25.

But after the collision, the apparent speed of the double mass is the 
difference between the two speeds which we have already worked out to 
be 0.315. The  γ factor for this is 1.054 so the relativistic KE is equal to  
2 × (1.054 – 1) = 0.108. If we add in the heat energy lost we get 0.108 + 
0.114 = 0.222, not 0.25.

'That's not very different.'

'That's not the point. They should be exactly the same. There is 
something seriously amiss here.'

'Well, I am afraid I am not going to be able to help you much – but if 
your calculations are right it does sound as if the law of conservation of 
energy is is serious trouble!)

The resolution of Albert's problem

Albert is right. There is something seriously wrong with his 
calculations. What he has forgotten is that the heat generated by the 
inelastic collision also possesses mass. Relativity requires that mass has 
energy according to the relation E = mc2. The converse of this is that 
energy possesses mass equal to E/c2. The mass of the combined object 
after the collision is therefore not 2m but 2m + E/c2 where E is the loss 
in kinetic energy.

This complicates matters because we cannot work out the final speed 
of the two masses until we know the energy lost – and we cannot work 
out the energy lost until we know the final speed. There is nothing for it 
but to resort to some algebra.

If the velocity of the first mass is v1 (gamma factor  γ1) and the 
velocity of the combined mass is v2 (gamma factor  γ2) then applying the 
conservation of momentum in the stationary frame, making allowance 
for the extra mass of the lost energy E (and taking m = 1 and c = 1) we 
have:

γ1 v1 = γ2(2 + E)v2

Now before the collision, the total kinetic energy is simply ( γ1 – 1).

After the collision we have the relativistic KE of the combined 
masses (2 + E)( γ2 – 1) plus the lost energy E so
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γ1 − 1 = (2 + E )(γ2 − 1) + E
γ1 + 1 = γ2(2 + E)

Eliminating E from these equations we get:

γ1 v 1 = γ2

(γ1 + 1)
γ2

v2 = (γ1 + 1)v2

v 2 =
γ1v 1

γ1 + 1

Since in our example,  v1 = 0.6 and  γ1 = 1.25, it follows that 
v2 = 0.333 (γ2 = 1.061), slightly slower than the figure of 0.351 which 
Albert calculated because of the extra mass of the heat energy.

We can also calculate this energy E which is

E =
γ1 v1

γ2 v2

− 2 =
1.25 × 0.6

0.33 × 1.061
− 2 = 0.121

Now for the accounting in the space ship frame.

The total relativistic KE before the collision is as Albert calculated it 
–  that is 0.25

After the collision, the KE of the combined mass is
(2 + E )(γ 2 − 1) = 2.121 × 0.061 = 0.129

Adding in the lost energy 0.129 + 0.121 = 0.25!!

It seems truly miraculous that, including both the momentum and the 
mass of the 'lost' energy, the law of conservation of energy is upheld in 
both frames.

Of course, just proving that the law is true in one simple instance 
does not prove the general law but it is indeed true in all frames and in 
all circumstances.

But it all goes to show just how subtle relativity is.

Albert's example illustrates a very important point: anything which 
has energy has extra mass too. A hot cup of tea is more massive than a 
cold cup of tea; A wound up wrist watch is heavier than when it is run 
down; A pair of cylinders containing 2N atoms of hydrogen and N atoms 
of oxygen are more difficult to move about than the same cylinders 
filled with N molecules of water; the combined mass of a cuckoo clock 
plus the Earth is greater when the weight has been pulled up than when 
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it has reached the bottom24 etc. etc.

In all these cases, the more energetic system has more mass by any 
definition you can think of. They weigh more in a gravitational field and 
they possess more inertia when a force is applied. Energy really does 
have mass (though, of course, in all the cases cited the magnitude of the 
mass is tiny.)

Even photons have mass25.

A box with perfectly reflecting walls containing a few photons 
buzzing around will weigh more than one without26.

24 Note, it is not the clock  which is heavier; it is the Earth/clock system which 
is more massive.

25 Of course, the rest-mass of a photon is zero but it has a relativistic mass of 
hν/c2.

26 Just such a box was the subject of a famous debate between Einstein and 
Bohr in 1930
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The Doppler Shift and the Photon
In a previous chapter we derived an expression for the Doppler shift 

of light assuming that light was a wave (see page 66). But if light is not 
a wave at all but a stream of photons, how can they be affected by the 
relative motion between the source and the observer? After all, if you 
are travelling towards a source of photons you will still see them hit you 
at the speed of light so what is the difference?

The answer is obvious. The photons will still appear to you to be 
travelling at the same speed but they will have more energy and more 
momentum.

This is a very pretty idea – but does it actually check out 
numerically? Lets start with a more down-to-earth example.

A terrorist is travelling towards you on a flatbed truck at a relativistic 
speed v firing bullets from a machine gun which is known to have a 
muzzle velocity of u. The question is – what is the energy and 
momentum of the bullets when they hit you?

Well, assuming that you are still in a position to care, the calculations 
go like this: first it will be convenient to work out a formula for the γ 
factor appropriate to an object moving with a speed equal to the 
relativistic sum of u and v.

γu+v =
1

√1 − ( u + v

1 + uv /c 2)
2

/c
2

This formidable expression does, however, simplify quite nicely and 
reduces to:

γu+v = γu γv(1 + uv/ c2)

(The proof of this formula will be found in the Appendix.)

Armed with this useful formula we can now easily write down the 
momentum and energy of the bullet:
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momentum p = γu+v m
u + v

1 + uv /c2

= γu γv m(u + v)

total relativisticenergy E = γu+v mc 2

= γu γv m c
2
(1 + uv /c

2
)

= γu γv m(c2 + uv )

In themselves, these formulae are, perhaps, not particularly 
important. What is of more interest is the ratio of the momenta and 
energies in the two frames.

According to the terrorist:

original momentum p0 = γu m u

original energy E0 = γu mc 2

so the respective ratios are:

p
p0

= γv
u+v

u
E
E0

= γv(1 + uv /c2)

Just to fix these ideas more firmly, if the truck was moving towards 
you at a speed of 0.6c (kv = 0.8) and the muzzle velocity was also 0.6c 
then the momentum of the bullet would be increased by a factor equal to 
0.8 × 1.2/0.6 = 1.6 and the energy would be increased by a factor 
0.8 × (1 + 0.36) = 1.09.

You could reasonably argue that all this is pretty academic, 
considering the circumstances, but what is important about these 
formulae is not what they contain, but what they are missing.

The formulae do not mention the mass of the bullet!

The implication of this is that the formulae are just as valid for 
bullets of zero rest mass (i.e. photons) as they are to real bullets. All we 
have to do to get the equivalent formulae for photons is let u tend 
towards c. This gives us for momentum:
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p
p0

= γv
c + v

c
=

c + v

c √1 − v2 /c2

=
c + v

√(c − v)(c + v)

= √ c + v
c − v

 

and for the energy
E
E0

= γv(1 + v /c) =
c + v

c √1 − v 2 /c2

=
c + v

√(c − v)(c + v )

= √ c + v
c − v

which is exactly the same!

On reflection, this is just as it should be because, for a photon, 
E = pc so energy and momentum are proportional.

In addition, we have arrived at exactly the same formula for the 
Doppler shift of a photon that the guard and the station master worked 
out assuming that light was a wave!

Indeed, it may be said with equal verity that the Doppler shift in light 
is due either to a combination of the Moving Source effect and Time 
Dilation assuming that light is a wave or to the relativistic addition of 
velocities assuming that light is a stream of particles.

In this instance, Relativity and Quantum Theory are seen to be in 
perfect agreement.
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Part 4: Gravity
The Experiment in the lift

Arthur and Betty were visiting Shanghai and Arthur suggested they 
go to the observation deck at the top of the Shanghai Tower.

'Great idea.' said Betty. 'Wait a mo while I get some things, though.'

Soon they were waiting in the lobby for the lift to come down. Betty 
rummaged in her rucksack and pulled out a bathroom scales and a stop 
watch.

'What on Earthy do you want those for?' queried Arthur.

'I want to measure the height of the tower,' she answered.

'How are you going to do that? Wait – I have it. You are going to 
throw the scales off the deck at the top and time how long it takes to 
reach the ground! Is that it?'

'No, silly.'

'Well how then?'

'Wait and see.'

When the lift arrived, Betty placed the scales on the floor and asked 
her brother to stand on them. Then she crouched down to look at the 
pointer. It read 80 kg.

'Now press the button for the top floor, Arthur' she said.

As the lift ascended, Betty scribbled some figures down in her 
notebook.

When they got to the top and had had a look at the fabulous view of 
the city, Arthur said 'What was all that about in the lift on the way up?'

'Well, what did you notice when the lift started accelerating 
upwards?'

'It felt as if I got a bit heavier.'

'Yes, the scales read an average of about 96 kg for 10s.'

'What can you deduce from that?'

'Well Newton's law says that force = mass × acceleration. We know 
that you normally weigh 80kg. The extra 16 kg force was accelerating 
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you upwards.

'As 16 kg force is 160 N the acceleration of the lift must have been 
160/80 = 2 ms-2.

'Since the acceleration lasted for 10 s, I can deduce that the lift 
achieved a speed of  20 ms-1 which is about 45 mph.'

'Wow – that's pretty impressive. The speed, I mean; not your 
calculations,' said Arthur.

'Thanks a lot.'

'Okay – I didn't mean it. How long did we travel at that speed?'

'15 seconds.'

'So we must have travelled 300 m.'

'Correct – and during the accelerated phase we travelled about 
100 m.'

'What did the scales read while we were travelling upwards at 
constant speed?' asked Arthur. 'I suppose it was a bit more than 80 kg 
because it would need a bit of force just to keep me moving.'

'No, you are completely wrong about that. It is true that a car, for 
instance, needs a constant force just to keep it moving but that is 
because there is always friction. But for you in the lift there is absolutely 
no friction because the air all around you is moving at the same speed. 
No, the scales read exactly 80 kg.'

'Yes, I see that now.' Arthur conceded.

'What did you experience when we were approaching the top?'

'My stomach gave quite a lurch!'

'That is because you were experiencing negative acceleration, 
Negative g is always more uncomfortable than positive g. That is why 
the designers of the lift slowed the lift down in 20 seconds not 10.'

'What was the reading on the scales?'

'The scales read 72 kg which means that the deceleration was 1 ms-2 
and during that time we travelled another 200 m making the total 
distance, and the height of the tower 100 + 300 + 200 = 600 m.'

'Well, I have to admit, I am impressed after all. And to think that you 
were able to calculate all of this without looking outside the lift!'

'That's a really important point. You know that, when you are 
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travelling in a train, it is impossible to determine how fast you are going 
simply by doing experiments inside the train – indeed, that is the 
fundamental principle of Special Relativity. But when it comes to 
frames of reference which speed up, slow down, or turn a corner, it is 
possible to measure the acceleration.'

Later that day, Arthur thought hard about what his sister had said and 
he had an idea.

'I don't think you are right to say that you can always measure 
acceleration by doing experiments inside a closed box.'

'Why not?' said Betty.

'Because I can think of a way of getting the same results without 
moving the box at all!'

'How could you do that?'

'By switching on some extra gravity!' said Arthur triumphantly.

'How?'

'Well, in order to make you think you were accelerating, I could just 
quickly move a large asteroid under the box for a while.'

'Sounds rather unlikely to me. But actually you are perfectly right. 
Inside the box acceleration and extra gravity are completely 
indistinguishable. Astronauts in some future space ship could simulate 
Earth's gravity by simply accelerating at 10 ms-2 and they wouldn't be 
able to tell the difference at all.' said Betty.

'Maybe gravity doesn't exist and we only feel a downward force on 
our bodies because the Earth is actually expanding at 10 ms-2!'

'Don't be ridiculous!' said Betty.

'I am not being ridiculous. Can you prove that it isn't?'

'Well, no, actually; I suppose I can't.'

'There you are then' said Arthur triumphantly.
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Newton's Equivalence Principle
Galileo was the first person to realise that, if you could only remove 

all resistance, bodies of different mass would all fall with the same 
acceleration and Newton was the first person to explain why. The reason 
was, he argued, that the weight of a body (i.e. the force of gravity on it) 
was proportional to the mass but the acceleration of a body (acted upon 
by a constant force) was inversely proportional to the mass. The 
acceleration of a body just accelerated by its own weight would 
therefore be independent of the mass and in the case of the acceleration 
due to gravity at the surface of the Earth it would be 9.8 ms-2.

There is, however, a hidden assumption in this argument, as Newton 
himself realised. It assumes that gravitational mass and inertial mass are 
identical. This may seem obvious but there is no logical necessity for it 
to be so. One could imagine, for example, that the force of gravity could 
act differently on different elements – for example iron and aluminium – 
and that the force of gravity on 1 kg of aluminium could be different 
than the force of gravity on 1 kg of iron27.

'That's silly!' said Arthur when Betty had explained this to him. 'If I 
want to measure out 1 kg of aluminium rivets I get a pair of kitchen 
scales, put a a 1kg iron weight on one side and then pile up aluminium 
rivets on the other until the scales balance. Obviously, then, the force of 
gravity would be equal on both objects.'

'True, but if gravity really did act more on, say, aluminium than it 
does on iron, then you wouldn't need to put 1 kg of rivets in the pan to 
make the scales balance.'

'OK then, suppose I use a bathroom weighing machine instead of 
scales. Are you saying that when I put my rivets on the weighing 
machine they will weigh less than 1 kg?'

'No I am not saying that. The weighing machine, like the scales 
actually measures the force of gravity on an object, not its actual mass.'

'So how can I compare the mass of two objects without using 

27 When I talk about 1 kg of aluminium and 1 kg of iron, I am referring to the 
inertial mass of the substance. Inertial mass is more obviously connected to 
the 'amount of matter' present because it is obvious that inertial mass does 
not change if, for example, to take it to a place where the strength of gravity 
is different or even zero.
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gravity?'

'You can use artificial gravity. You remember when we were 
discussing what it felt like to be accelerated in the lift? What do you 
think would happen if we had put a pair of scales on the floor of the lift 
with a 1 kg mass of iron in one pan and a pile of rivets in the other so 
that the scales balanced when the lift was stationary?'

'I don't see why the scales should do anything other than remain 
balanced as the lift accelerated upwards.'

'That is what happens usually,' conceded Betty, 'but if gravity acted 
more strongly on aluminium than iron, I contend that there would be 
less than a kilogram of rivets in the pan.'

'So what would happen?'

'Well the upward force needed to accelerate the aluminium would be 
less then the upward force needed to accelerate the iron and the scales 
would tip towards the iron.'

'That's weird.'

'It may be, but it is not illogical. Consider this. How would you 
measure out a kilogram of rivets if you were in a space ship, far away 
from any gravitating planets or stars?'

'What equipment have I got?' asked Arthur

' Anything you like. A pair of scales; some kg weights, a bathroom 
weighing machine – and, of course, a space ship equipped with rocket 
engines.'

'Well, I know it is no use using the scales and the weighing machine 
in zero g because in zero g, the rivets don't weigh anything; so, I guess I 
will have to fire up the engines. Then with artificial gravity produced by 
the acceleration, I could use the bathroom weighing machine as normal.'

'Yes, that's right. Under artificial gravity the weighing machine 
would register a reading, but it would only register the right reading if 
the rocket engines produced an acceleration of exactly 1G. You can 
easily get round this problem, though, by putting the kg mass on the 
machine first, noting the reading, then piling on the rivets until the 
reading was the same. The it wouldn't matter what the acceleration of 
the rocket was.'

'That's cool. Come to think of it, it would be even easier to use the 
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kitchen scales. If I understand you correctly, if the pile of rivets in the 
pan exactly balances a kilogram mass in the other pan, then the masses 
will be exactly equal, no matter what the acceleration of the rocket is.'

'Exactly so.'

'And when we got back to Earth and weighed the rivets using Earth's 
gravity, the rivets would weigh more than the kg mass; and if I dropped 
the rivets they would fall faster than the iron – is that right?'

'Right again. But, of course, the remarkable thing is that this doesn't 
happen. Experiments have been performed which show that inertial 
mass and gravitational mass are identical to one part in several billion – 
but nobody knows why.'

'Well, it seems obvious enough to me.'

'How so?' said Betty.

'Because inertial mass and gravitational mass are the same thing!'

'Well, that is perhaps, a rather naïve way of putting it but you are 
essentially right. If you can't explain why A equals B you can always put 
it on a pedestal and proclaim that you have discovered a new 
fundamental principle A = B! Which is basically what Einstein did when 
he claimed that it was impossible to tell the difference between an 
accelerated frame of reference and a uniform gravitational field.'

'That sounds very much like the principle that led him to Special 
Relativity, namely, that it is impossible to tell the difference between a 
stationary frame of reference and a moving one.'

'Yes, but if you thought that Special Relativity was bizarre, his 
General Theory of Relativity was even stranger! Did you know, for 
example that gravity bends light?'
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The Bending of Light
There is another experiment that Betty could have performed to 

measure the acceleration of the lift. She could have set up a laser pointer 
to shine a beam of light across the lift and noted exactly where it fell. 
Then she could note where the laser beam fell when then the lift was 
a) accelerating, b) travelling at constant speed and c) decelerating.

Let us consider the constant speed case first.

At first sight, you might think that the laser beam would be deflected 
downwards because in the time it takes for the light to cross the lift t, the 
lift has moved upwards by a distance vt and so the beam should hit the 
opposite wall this distance lower. This conclusion is false28. If it were 
the case, then Betty would be able to make an absolute measurement of 
the speed of the lift – something which is explicitly denied by the 
fundamental Principle of Relativity – but the reason why this conclusion 
is false needs some explaining.

The error most people make is to suppose that having set up the laser 
pointer so that it directs a ray of light at right angles to the wall, the 
beam remains at right angles to the wall even when the lift is moving 
upwards. This is not the case.

When Betty sets up the laser pointer to direct its beam parallel to the 
floor when the lift is stationary, she is in fact lining up three points; 1) 
the source of the light, 2) the collimating device and 3) the mark on the 
wall. Essentially the arrangement is as follows:

Source Collimator Mark

Light from the source is emitted in all directions but the collimating 
device (which in a solid state laser is the actual crystal itself which emits 
the light) only permits the horizontal beam to pass and it is this ray 

28 The number of websites which claim this to be true is too large to 
enumerate.
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which hits the mark on the wall.

Now consider what happens if the whole apparatus is moving 
upwards at a constant speed.

In the time that it takes for the light to cross from the source to the 
collimator, the collimator itself has moved upwards. The horizontal ray 
will be blocked and it will be an upward moving ray which is allowed to 
pass through – and, of course, this is precisely the ray which will go on 
to hit the mark on the opposite wall!

Source
Collimator

Mark

It is true that, if a light beam were directed through a hole in the lift 
from outside, the light would hit the opposite wall a distance vt below 
the horizontal, but Betty's laser pointer is inside the lift and partaking of 
the same velocity and it will always generate a ray which hits the 
opposite wall in the same place regardless of the speed which which the 
lift is moving (provided that the speed is constant, of course). To an 
observer outside the lift, it will appear that the light is travelling along a 
diagonal line and is therefore travelling further – but then this is exactly 
the reason why, to an observer outside the lift, Betty's clocks seem to be 
running slow29.

But when the lift is accelerating, in the time it takes for the light to 
travel across the lift t,  the lift would have moved an extra distance 
upwards equal to ½at2 where a is the acceleration of the lift.

From an outsider's point of view the light beam travels in a straight 
line but to those inside the lift, it appears to bend downwards and by 
measuring the degree of bending30 (!), Betty could easily calculate the 

29  For a simple proof of the Time Dilation formula based on this insight, see 
the appendix.

30 If the lift was 3 m wide, the time taken for the light to cross the lift would 

104



acceleration of the lift.

The example of the lift is complicated by the fact that both real and 
artificial gravity play a role. To simplify things further we must imagine 
Betty in a space ship measuring the acceleration of the ship in exactly 
the same way by measuring the bending of a light beam compared to the 
position of the beam when the rocket engines are switched off. Let's 
suppose that the ship is accelerating at 10 m s-2 – in other words at 1G, a 
fact which Betty can confirm by standing on a bathroom weighing 
machine and noting that it reads exactly the same as it did back on 
Earth. The question now arises – when Betty lands back on Earth, will 
the light beam bend or not?

Virtually all nineteenth century physicists would say no. Light was 
then believed to be a wave and this was emphatically confirmed by 
James Clerk Maxwell who showed that it was electromagnetic in origin. 
Nothing in his theory gave any grounds for supposing that light would 
be affected by gravity.

Newton, however, would have disagreed. For him, light was a stream 
of particles which, like everything else, were subject to his universal 
force. He even used this idea to show how light would bend when 
entering a dense medium such as glass.

Einstein sided with Newton, but not because he thought that light 
was a stream of gravitating particles, but for a very different reason. It 
seemed to him that just as it had proved impossible to detect absolute 
motion through space, it ought to be impossible to prove that you were 
accelerating. This is Einstein's Equivalence Principle: 

It is impossible by carrying out experiments in a small  
closed laboratory to distinguish between uniform acceleration  

and a uniform gravitational field.

A number of important facts can be deduced from this assumption. 
The first is that gravity bends light in exactly the same way that it bends 
the paths of any ordinary projectile and that when Betty returns to Earth 
she will find the laser beam deflected by exactly the same amount that it 
was deflected when the space ship was accelerating at 1G.

be 10-8 s and the spot would therefore deflect something like 10-16 m –  
which is smaller than the diameter of a proton!
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The second is that gravitational mass and inertial mass must be 
exactly the same. If Arthur's pile of rivets and his 1 kg mass 'fall' to the 
back of the spaceship with exactly the same acceleration (which they 
must do because they are not actually accelerating – it is the space ship 
which is accelerating in the opposite direction) then they must fall to the 
ground in Earth's gravitational field with the same acceleration too. This 
means that inertial mass and gravitational mass must be identical.

Thirdly, it follows that in any frame which is in 'free fall' – that is to 
say, any frame which is accelerating under the influence of a local 
gravitational field such as a lift whose cable has broken or a satellite in 
orbit round Earth, the laws of physics will appear to be identical to the 
normal laws of physics experienced by an observer far from any 
gravitational fields.
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Black Holes
'I like the idea that gravity bends light,' said Arthur. 'Could you put a 

light beam in orbit, say, round the Sun?'

'Yes, you could in principle,' said Betty, 'but because light travels so 
fast it would have to be very close to the Sun.'

'How close?'

'Well the standard expression for the speed of a satellite orbiting a 
star of mass M at a radius R is v2 = GM/R where G is Newton's 
Gravitation Constant. So R = GM/v2.'

'Do you know the value of G?'

'Not off hand; and I don't know the value of Msun either but I do know 
that Earth orbits the sun in 1 year and that light takes 8 minutes to reach 
us from the sun.'

'How does that help?'

'Well, it means that the circumference of the orbit is about 50 light-
minutes or  1/10,000th of a light year and that the speed of the Earth 
round the Sun is about 1/10,000th of the speed of light.

'Since the radius of the orbit is inversely proportional to the speed 
squared, it follows that the radius of the orbit we are seeking is 100 
million times smaller than the orbit of the Earth – which is about a mile.'

'That's no good. I think the Sun is a bit bigger than that,' said Arthur.

'Yes, but black holes are thought to be objects in which a mass is 
compressed to essentially a point, so light could orbit round a black hole 
whose mass was equal to the mass of the Sun at a radius of about 1 
mile.'

'That's pretty cool!'

The radius is called the Schwartzschild radius and you can easily 
calculate it for any mass using the formula Rschwartzschild = 2GM/c2.'

'Hang on – did you say two GM/c2?'

'Yes, I did.'

'But I thought you said the formula for the radius was just GM/c2.'

'Well, I was hoping you wouldn't notice that.'

'So?'
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'The truth is, I don't really understand it,' confessed Betty. 'But it 
turns out that in a case where an object is being deflected round a star, 
the bending is exactly twice the bending you get when you are just in a 
uniform gravitational field. So with twice the bending, you can orbit the 
black hole at double the distance. The Schwartzschild radius of the Sun 
is more like 2 miles, not 1.'

'But the bending of light in a uniform field is as predicted by 
Newton?'

'Yes – that is guaranteed by Einstein's Principle of Equivalence. 
There is no doubt about that.'

'I would still be interested to know where this extra factor of 2 comes 
from, though.' said Arthur.

'So would I,' agreed Betty.31

31 In fact the situation is even worse than Betty thinks. In the first case, when 
you get close to a black hole, space is so distorted it becomes meaningless 
to talk about the 'radius' R of an orbit. It is, however, possible to talk 
meaningfully about the circumference C of an orbit and we can usefully 
define the 'radius' as being equal to C/2π – but we must abandon any 
thought of the 'radius' as being in any way connected to 'the distance 
between the orbit and the centre of the black hole'. Secondly, it turns out 
that the 'radius' at which light can orbit a black hole is actually3GM/c2   i.e. 
1.5 times the Schwartzchild radius.
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Albert's Slow Clock
There is a third experiment which Betty could have done to measure 

the acceleration of the lift (or, more realistically, the acceleration of a 
space ship). Special Relativity predicts that, when the space ship is 
accelerating, a clock at the back of the ship will run more slowly than a 
clock at the front so all Betty has to do is to prepare two very accurate 
synchronised clocks at the back of the ship; then she moves one clock to 
the front of the ship for a few minutes; then she moves the second clock 
up to the front. The two clocks will now differ in the time they read and 
it is a simple matter to calculate the acceleration of the space ship.

'But why on earth should a clock at the back of the ship run more 
slowly than a clock at the front?' exclaimed Arthur.

'It is all due to the Doppler effect.' said Betty. 'Suppose that the clock 
at the back of the ship sends timing signals to the clock at the front of 
the ship every second. Let us also suppose that the ship is l metres long 
and that it is moving at a constant speed of v ms-1 where v is much 
smaller than the speed of light c.

'Consider the situation from the point of view of an inertial observer 
(i.e. one who is not being accelerated) outside the ship. The external 
observer sees each light pulse travel the length of the ship plus the extra 
distance travelled by the ship in this time. It is easy to see that the time 
taken will be l/(c – v). What this means is that the clock at the front of 
the ship will receive the timing signals at 1 second intervals but delayed 
by an amount l/(c – v), and if the ship is travelling at constant speed the 
delay will remain constant too.

'Now if the space ship is accelerating ...'

'I see what you are getting at,' said Arthur, ' If the ship is accelerating 
all the time, the delay keeps getting longer and longer; so, the times of 
arrival of the light pulses as recorded by the clock at the front get 
progressively later and later.'

'That's right. Each second the speed increases by the acceleration a 
so the time delay increases by

l
c − (v + a)

−
l

c − v

'This looks a bit complicated but if we remember that v is much 
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smaller than c it boils down to just al/c2. What this means is that every 
second as measured by the clock at the back turns into 1 + la/c2 seconds 
at the front. To the clock at the front it looks as if the clock at the back is 
running slow.'

Betty's simple argument led to the prediction that the clock at the 
back of the space ship would run more slowly by a factor of 1 + la/c2. 
But she assumed that at all times the space ship was moving much more 
slowly than the speed of light. If the analysis is carried out more 
carefully it turns out that the correct formula for the time dilation factor 

is
1

√1 − 2 la/c2 . This works out to be exactly the same as Betty's 

formula when 2la is much smaller than c2 and second order terms can be 
ignored.

Of course, it is no accident that this formula looks very similar to the 
standard formula for the relativistic time dilation factor which is 

1

√1 − v2
/c2  just with the v2 replaced by 2la.

'I see,' said Arthur. 'So if clocks at the back of a space ship go slow I 
suppose rulers will also be contracted by the same factor.'

'No, that's not correct,' said Betty. 'Suppose Albert, at the back of the 
accelerating space ship is measuring the speed of light by measuring the 
time it takes for a beam of light to travel along a standard metre rule 
placed at right angles to the direction of motion of the ship. Ludvig, at 
the front of the ship can just look down the space ship and see that 
Albert's metre ruler is the same length as it always was. (If Albert and 
Ludvig were on a railway train, Albert would always measure the width 
between the rails correctly however fast or with whatever acceleration 
the train was going.)'

'But surely, ' objected Arthur, ' that means that, according to Ludvig, 
Albert will not get the right answer for the speed of light – a result 
which contradicts the basic principle of Special Relativity, that all 
observers must gate the same answer for the speed of light, however 
they are moving.'

'No. Albert will, of course, get the right answer when he makes his 
measurements and does the calculation. It is Ludvig who infers that, 
since, to him, his twin brother's clock is running slowly,  light actually 
does travel more slowly at the back of the spaceship than at the front 
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and  that Albert's calculation is in error.'

'I don't get that. How can light travel slow for Albert but at the right 
speed for Ludvig?'

'For the same reason that time travels more slowly for Albert than it 
does for Ludvig. But don't forget that Albert will insist that the speed of 
light is exactly what it should be and that, to an inertial observer outside 
the ship, light will appear to travel at the same speed at both ends of the 
ship. No – the only reason Ludvig thinks that Albert's clocks are going 
slow is because the pulses produced by  Albert's clock are less frequent 
than his own, because every second the light has to travel a bit further to 
get from the back of the ship to the front.

'So let me get this right,' said Arthur. 'Relativistic length contraction 
and time dilation are real effects because they can make pennies bend, 
ropes break and twins to age differently. But clocks running slow at the 
back of a space ship, that's just a Doppler-shift illusion and isn't real. Is 
that right?'

'No, that's not right,' said Betty. 'If some time later Albert brings his 
clock up to the front of the space ship, his clock will not read the same 
as his brother's. It will have genuinely lost time and, in exactly the same 
way that he returned from his journey to Alpha Centauri younger than 
his brother, he will be that bit younger in this case too.

'You've got to be kidding!'

'No I'm not. There is no way that Albert's clock can 'catch up' with 
Ludvig's when he brings it up to the front of the space ship. Any time 
lost while it was at the back during the accelerating phase is lost 
permanently and Albert will himself be a few seconds younger than his 
twin brother.'

'Really? I find that difficult to believe.'

'It's true though,' said Betty.

'I seem to remember' said Arthur ' that the twins only differed in age 
when they got back together because there was an asymmetry in the 
situation so I suppose that, instead of Albert joining his brother at the 
front, if Ludvig joins his brother at the back, they will be the same age, 
won't they?'

'I am afraid not. It doesn't matter who joins who, the damage has 
already been done and Albert is going to be younger either way.'
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'That's weird.'

'But there is even more significance to this thought experiment,' said 
Betty.

'What is that?'

'You remember that Einstein's Principle of Equivalence laid down the 
rule that it is impossible to tell the difference between an accelerated 
system and a gravitational field?'

'I do.'

'Well, that means that if clocks at the back of an accelerated space 
ship run slow – so do clocks at the bottom of a well!'

'Are you telling me that if Albert went and lived at the bottom of a 
well like a hermit for a few years, he would emerge younger than his 
twin brother?'

'I mean exactly that!' replied Betty.

'Is that because gravity makes clocks run slow?'

'No, not quite. Throughout this discussion we have been assuming 
that both clocks experience the same acceleration in the space ship and 
the clock at the bottom of a well experiences the same strength of 
gravity as the clock at the top. So it is not the presence of gravity which 
in itself causes the clock at the bottom of the well to run slow.'

'What is it then?' asked Arthur.

'You know that gravity bends light so, as the light pulses from the 
clock at the bottom of the well climb up ...'

'I've got it! They slow down like projectiles from a gun!'

'No. They can't slow down. Light always travels at the same speed 
regardless of who measures it.'

'So how does gravity affect the light then?'

'It reduces its energy and hence also its frequency.'

'Of course! It is Doppler shifted! Just like the danger signal.'

'That's right. When light climbs up through a gravitational field like 
the field surrounding a star, it loses energy and becomes red-shifted.'

'Is that why the distant galaxies show a red shift?'

'No. That happens for an entirely different reason. In fact the 
gravitational red shift from an ordinary star is almost too small to be 
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measured; but, of course, things are different when it comes to black 
holes. Round a black hole the gravitational field is so intense that any 
photon which tried to leave its surface would be red-shifted out of 
existence.'

'You mean, it wouldn't have enough energy to escape?'

'Exactly that.'

'Is it possible to measure the slowing down of clocks at the bottom of 
a well?' asked Arthur.

'Yes it is possible but the effect is very small.'

'How small?'

'Well to get some idea we can use my formula but just put the depth 
of the well for l and the acceleration due to gravity for a. For a well 
10 m deep this gives us a dilation factor of approximately 1 + 10 × 10 / 
300,000,0002 . So a clock at the bottom of this well would lose a second 
in about 29 million years!'

'Well I don't need to worry about that then!'

'But your smartphone does when it calculates its position by 
receiving incredibly accurate timing signals from the GPS satellites 
orbiting 20,000 km overhead. Unfortunately, however, we cannot use 
my simple formula to calculate the size of the effect because gravity is 
less at that height. I am sure it can be done somehow though.'
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Gravitational Time Dilation
Betty is right. But we need a new idea here – the idea of gravitational 

potential. When you lift up a mass m from A to B through a height h in a 
uniform gravitational field g, you give it gravitational potential energy 
mgh. Double the mass and you double the energy. The quantity gh is 
called the gravitational potential difference between the two points and 
is equal to the gravitational potential energy per unit mass. It is usually 
given the symbol Δφ. φ stands for 'potential' and Δ stands for 
'difference'.

If the gravitational field is not uniform, then we have to add up all 
the little bits of potential difference between A and B. This process is 
called integration so in general we have:

Δϕ=∫
A

B

g dh

 The result of this is that the difference in gravitational potential 
between the surface of a planet of radius R and a point at a height h 

above it is equal to Δϕ =
Rh

R + h
g s where gs is the acceleration due 

to gravity at the surface.32

In the case of a GPS satellite, h = 20,000 km, R = 6400 km and gs = 
10 ms-2. This works out to about 50 million joules per kilogram. (Which 
gives you some idea of the amount of energy needed to put a satellite 
into orbit.)

The correct formula for the Gravitational Time Dilation factor33 is

1

√1 − 2 Δϕ/c2

which, as we have seen, approximates to 1 + Δϕ/c2 so, in a year, 
say, (31 million seconds) the clock in the satellite will gain on the clock 
on the ground by 31,000,000 × 50,000,000 / 300,000,0002 seconds or 17 
milliseconds. Not a lot!

It is also worth pointing out that, as the satellite is moving at a speed 

32 For a proof see the Appendix.
33 A proof of this formula will be given in the chapter on the Rotating Space 

Station on page 124.
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of about 4 km s-1, there will also be a time dilation effect due to its 
speed. As it happens, this turns out to be a bit smaller – about 6 
milliseconds per year, so the clock in the satellite will gain slightly more 
more than it loses.

As Betty said, the presence of a gravitational field does not of itself 
makes clocks run slowly. Neither does motion. Both these effects only 
exist relative to another observer who is either in a different place in the 
gravitational field or in relative motion. When Ludvig receives 
messages from his brother on his journey to Alpha Centauri, he deduces 
that Albert's clocks are running slow but he cannot confirm that until 
Albert returns home and the discrepancy is revealed. In the same way, 
Ludvig can deduce that the clock at the bottom of the well is running 
slow but again this is only confirmed when the clock is raised to the 
surface again.

There is, however, one crucial difference between the effects of 
gravity and the effects of motion. Both cause clocks to run slow – but 
only motion causes lengths to contract. This enables the guard and the 
station master to agree on the speed of light – both of them thinking that 
the others clocks are slow but their rulers are short. But, when Ludvig 
looks down the well at his brother measuring the speed of light, he sees 
Albert's clocks running slow but his ruler the correct length. He has to 
conclude therefore that, down there, light genuinely does travel more 
slowly than it does for him. In short, we can say that, from the point of 
view of an observer at the top of the well, the speed of light at the 
bottom of a potential well of depth Δφ is

c √1 − 2Δϕ/c2

It will not surprise you to learn that if the potential well is deep 
enough, the speed of light as viewed from someone a great distance 
away becomes zero and light will never 'escape' from such a well. (Do 
not forget, however, that from the point of view of someone down inside 
the well, light travels at its normal speed.)

Nor will it surprise you to learn that this is the real reason why light 
can never escape from a Black Hole. From the point of view of a distant 
outside observer, at the surface of a Black Hole time stops and light 
never moves!
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The Bending of Light (continued)
We are now in a position to better understand why gravity bends 

light.

When Betty described the way light bends in an accelerating lift, she 
explained that it only appears to bend because, during the time it takes 
for the light to cross the lift, the lift has accelerated and moved an extra 
distance ½at2 (see page 103). This is true, but it doesn't really explain 
why gravity bends light. The Principle of Equivalence says that it must – 
but this isn't really an explanation either.

The answer lies in the fact that light travels more slowly at the 
bottom of a well than at the top. Let Betty explain.

'I have have just realised something important.'

'Oh. What's that?' said Arthur

'I have just realised why gravity bends light.'

'That's amazing. Go on – show me.'

You know it is often said that sound travels well over water and that 
you can sometimes hear two people having a conversation on the other 
side of a lake as clearly as if they were next to you.'

'Yes. I know that.'

'Well, the reason is that the water immediately over the lake is cooler 
than the water higher up and that the speed of sound is less in cool air 
because the air molecules are not moving so quickly.'

'That sounds as if it should take longer for the sound to cross the 
water than before and the conversation should be less audible, not more.'

'No that's not what happens. The important thing is that the 
wavefronts closer to the water get dragged behind, rather like a line of 
soldiers on parade where one end of the row is hampered by some 
boggy ground. Here, I will show you.'

Whereupon Betty sketched out a drawing a bit like this:
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Source: inspiringscience.net

'See how the waves curl over the water, bending as they go, 
focussing themselves on the opposite shore.' explained Betty.

'I see that. And I suppose it is the same with light in a gravitational 
field. The light at the bottom travels more slowly than the light at the top 
so it bends over, just as if it was pulled down by gravity.'

'Exactly so.'

'Does it check out? I mean, can you show that the amount of bending 
in a 1G gravitational field is exactly the same as the bending you get in 
a lift accelerating at 1G?'

'I think I would bet my life on it.' said Betty.

Betty is safe. It does indeed check out. Once we take into account the 
effects of Time Dilation, Maxwell can agree with Newton. The latter can 
maintain that it is just the effect of the force of gravity on his stream of 
corpuscles; the former can claim that the bending is due to the 
retardation of his electromagnetic wavefronts. In truth, light is just doing 
what it has to do given the constraints imposed upon it by the rules of 
Relativity.

'But there is still something I don't understand.' said Arthur.

'What's that?'

'That factor of 2 you mentioned when we were talking about the 
Schwartzchild Radius of a black hole' (page 107)

'Yes, we haven't got to the bottom of that yet, have we?' 
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The Rotating Space Station
The Ehrenfest Paradox

The paradoxes we have discussed so far are, these days, beyond 
controversy. Even the Twins Paradox, which caused a good deal of 
argument in the 1960's, is now accepted as fact – though there are still 
books in print and websites which do not give the correct explanation of 
the paradox. The paradox of the Rotating Space Station, however, is still 
a subject of current debate and may yet spring some surprises on us.

A popular idea in science fiction is the concept of a space station in 
the form of a rotating wheel. Objects and people in the rim of the wheel 
will experience a centripetal acceleration towards the centre and will 
effectively imagine that they are living in a world with artificial gravity. 
If the rim is travelling at a speed v and the radius of the wheel is R then 
the acceleration is given by the formula v2/R. For a station of radius 
90 m, the speed necessary to provide 1G gravity would be 30 ms-1and it 
would rotate once every 19 seconds.

The paradox is this. If Albert was to take a metre ruler aboard the 
station and carefully measure the radius, he would find that it is exactly 
90 m. There is no reason to expect the ruler to be contracted because it 
is moving at right angles to its length. In any case, if it was contracted, 
he would still find that 90 rulers would fit along the radial corridor 
because the space station would also be contracted. Now it would 

118



appear that the same argument applies to a measurement of the 
circumference. If the ruler undergoes length contraction, so does the 
space station and Albert will still always measure the circumference to 
be 2π × 90 = 565.5 m long.

But what about his brother Ludvig, hovering over the docking port, 
watching the station rotating below him? Suppose that there is some 
stationary scaffolding, perhaps left over from the construction of the 
station, which exactly frames the now rotating station. Ludvig can check 
the dimensions of the radius and circumference directly. There are only 
two possibilities: either the station still fits the scaffolding exactly (i.e. it 
has the same dimensions that it had before it was set into rotation) or its 
dimensions have changed. When this idea was  was first formulated by 
Paul Ehrenfest in 1909 Sir Arthur Eddington thought that, since the 
moving rim would have to be length contracted, the radius would 
contract as well as the circumference. In effect he was putting forward 
the idea that gravity – or, in this case, artificial gravity – would cause a 
length contraction as well as a time dilation effect. There is no evidence 
that this is the case ,so we will assume that, to Ludvig, the space station 
retains the same dimensions all the time.

But Ludvig now has to face the fact that the circumference is moving 
at 30 ms-1 and any rulers and objects, including the fabric of the space 
station itself ought to be length contracted by a factor k. If he and Albert 
were to compare metre rulers as they passed each other, then. like the 
station master and the guard, they would each conclude that the other's 
rulers were length contracted.

Ludvig now watches Albert lay out a series of metre rulers round the 
circumference of the station. Albert can see no reason to suppose that he 
will need any more than the expected 565.5 m; Ludvig predicts that he 
will need a bit more34. Who is right? Is there a contraction or isn't there? 

And what about Albert's view? Surely, he can argue that it is not the 
station which is rotating, it is the scaffolding; in which case it is the 
latter which should be contracted, not the former.

This issue raises deep philosophical questions about the nature of 
linear and rotational motion and their relation with Space and Time. 

For Newton, Space and Time were absolute. He was perfectly 

34 Only 5.6 thousandths of a millionth of a millimetre actually!
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comfortable with the idea that the Sun was the centre of the universe 
and was absolutely stationary and that the Earth rotated round the Sun 
once a year, not relative to anything else but just through stationary 
space. But Galileo had shown that the laws which governed the 
behaviour of falling bodies was independent of motion when he pointed 
out that a cannon ball, dropped from the mast of a moving ship, would 
still fall at the base of the mast. At the very least this suggested that 
motion was a relative rather than an absolute concept. So Newton 
looked for evidence that Space and Time were absolute – and he thought 
he had found it in the behaviour of rotating bodies.

In the Scholium on Space and Time in the Introduction to Book I of 
the Principia he says:

We have some arguments to guide us, partly from the 
apparent motions, which are the differences of the true 
motions; partly from the forces, which are the causes and 
effects of the true motions. For instance, if two globes kept 
at a given distance one from the other, by means of a cord 
that connects them, were revolved about their common 
centre of gravity; we might, from the tension of the cord, 
discover the endeavour of the globes to recede from the 
axis of their motion. ... And thus we might find both the 
quantity and the determination of this circular motion, 
even in an immense vacuum, where there was nothing 
external or sensible with which the globes could be 
compared. 

There are two things to say about this argument. The first is that it is 
an argument for the existence of absolute rotation, not absolute motion. 
In fact we now know that there is no way absolute linear motion can be 
detected; indeed, this principle is at the heart of Special Relativity and is 
the reason why experiments such as the Michelson-Morley experiment 
singularly failed to detect the motion of the Earth through space.

As an argument for the existence of absolute rotation it carries more 
weight. Essentially it is saying that if the occupants of the space station 
experience artificial gravity, then they can infer that the space station is 
rotating without reference to anything outside the station.

This argument was challenged by Enrst Mach who pointed out that 
the argument doesn't work in a completely empty universe. Let me 
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explain. Suppose we have finished constructing the space station out of 
all the material in the universe so that our starting point is an empty 
universe with a non-rotating space station with no artificial gravity. How 
are we going to start the space station rotating? Because of the 
conservation of angular momentum, the only way is to get something 
else to rotate in the opposite direction. The usual technique it to attach 
rockets to the rim and fire them up. Now, rockets work by ejecting mass 
at high speed out of the exhaust so at the end of the day, when the space 
station is rotating up to speed, we have a space station rotating one way 
– and a whole load of exhaust gases rotating in the opposite direction. In 
other words, the universe is no longer empty and the rotation of the 
station can be measured relative to the cloud of exhaust gas.

Notwithstanding Mach's philosophical objection, it is generally 
assumed these days that Newton was right and that in practice we can 
determine the rotation of an isolated object with reference to the distant 
galaxies. (It turns out we can even talk about absolute motion through 
the cosmos too as we shall see in a later chapter.)

Returning now to the question of Albert's measurement of the 
circumference, there are still some authors who think that Albert will 
only need the expected 565.5 m. They usually explain the apparent lack 
of any length contraction effect by appealing to the idea that Albert and 
Ludvig cannot compare rulers as they pass by in exactly the same way 
that the guard and the station master do, because Albert is not in an 
inertial frame and cannot construct a system of synchronised clocks 
around the circumference of the space station in any consistent way. It is 
therefore incorrect to apply a simple length contraction effect to the 
rulers on the circumference.

I do not see the force of this objection at all. The existence or 
otherwise of the length contraction effect does not depend on the radius 
of the space station and, by making the radius as large as you please, 
you can make Albert's frame of reference as nearly inertial as you please 
too. It is my belief, therefore, that when Albert comes to lay out his 
rulers, he will find that he is (a few billionths of a millimetre!) short.

This is bound to cause him some surprise. He has measured the 
radius of the station and the circumference – but found that the ratio is 
slightly more than 2π. Nevertheless, I believe that he must accept this as 
fact. In a rotating frame of reference the circumference of a circle is 
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greater than  2π times its radius. In short, in a rotating frame of 
reference, space is not Euclidean. 

Although we are not generally aware of the the fact, we humans on 
planet Earth already live in a non-Euclidean world. If you draw a circle 
round London on a globe passing through, say, New York and then 
measure the length of its circumference you will find that is is always 
less than 2π times the radius of the circle (measured along the surface of 
the Earth, of course).

If we lived on the surface of a Pringle (a crisp shaped like a saddle) 
you would find, as Albert does, that the length of the circumference of a 
circle is greater than 2π times the radius.

This was the view adopted by Einstein himself who wrote in 1919

One must take into account that a rigid circular disk at rest  
would have to snap when set into rotation, because of the 
shortening of the tangential fibres and the non-shortening 
of the radial ones. Similarly, a rigid disk in rotation (made 
by casting) would have to shatter as a result of the inverse 
changes in length if one attempts to bring it to the state of 
rest. If you take these facts fully into consideration, your 
paradox disappears'. 

When Einstein realised this, he also realised that his Principle of 
Equivalence meant that any gravitational field would alter the geometry 
of space round it too. Albert lives in a world in  which his artificial 
gravity increases with distance from the centre of rotation and is 
directed radially outwards. He has also discovered that the distance 
round the circumference of a circle  is more than 2π times the radius of 
the circle . On the other hand, the gravitational field round a massive 
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object decreases according to an inverse square law and is directed 
radially inwards. The implication of this is that the distance round the 
circumference of a circle round a massive object ought to be less than 
2π times the radius of the circle and that the discrepancy increases as the 
radius gets smaller.35 It is essentially this fact which causes the orbit of 
Mercury to behave in a way which is different from the predictions of 
Newtonian gravity.

So what exactly does happen when the space station is spun up to 
speed? As far as Ludvig is concerned, the radius and the length of the 
actual circumference of the station remain unaltered but the girders 
which make up the circumference are length contracted. These girders 
are therefore placed under stress and will stretch to accommodate the 
extra length required36. This stress is totally independent of (and very 
much smaller than) the stress which any rotating object with mass will 
normally experience. You would get the same effect if you were to make 
a flat model of the space station out of rubber and then press it onto a 
Pringle.

Ludvig will also notice that  a clock at the hub of the space station 
keeps the same time as his own clock but the clocks on the rim will 
suffer from time dilation and will run slow.

Albert, however, will have a different explanation for the same 
effects. He will regard himself as stationary but he will experience a 
regime of artificial gravity which increases with distance from the 
central hub of the station. Since he has to climb up towards the hub 
against this gravity, clocks at the rim will run more slowly than the 
clock at the centre. His measurement of the length of the radius and the 
circumference will reveal to him that the space he inhabits is not 
Euclidean but he will interpret this as being due to the presence of the 
gravitational field. Either way, two measurable and physical phenomena 
will occur. a) stresses will exist in the structure of the station and b) 
Albert will age more slowly than Ludvig. 

35 It is not generally possible to define let alone measure the radius of a 
circular ring around a massive object because of the distortion of space that 
it produces. It is, however, possible in principle to measure the difference in 
circumference of two rings round a such an object and the difference will be 
found to be less than 2π times the separation of the rings.

36 In all probability the stress in the rim will compress the radial components 
and the whole space station will actually shrink very slightly as well.

123



When Betty was explaining the reason why clocks at the back of an 
accelerating space ship run more slowly than clocks at the front she was 
unable to derive a totally accurate expression (page 110) because the 
acceleration necessarily causes the speed to change and if the ship is 
moving at a relativistic speed, you cannot simply say that the speed 
increases by a (the acceleration) every second. In the case of the rotating 
space station, however, the acceleration only causes a change in 
direction, not speed. This makes it possible to derive an accurate 
expression for gravitational time dilation.

 Since the rim of the station is rotating at a speed ωR where ω is the 
angular velocity of the station, a clock on the rim must be running 
slower than a clock at the centre by a factor of

1

√1 − ω
2 R2

/c2

Now, in Albert's rotating frame, the artificial gravity is directed 
outwards and is proportional to the distance r from the centre. In fact 
g = ω2r where ω is the angular velocity of the station.

The difference in gravitational potential between the centre and the 
rim is therefore

Δϕ = ∫
0

R

ω2 r dr = ½ ω2 R2

with the potential greater at the centre than at the edge.

Eliminating  ω 2R2 from these two equations we get the correct 
equation for the gravitational time dilation factor between two points 
whose gravitational potential differs by  Δφ:

1

√1 − 2 Δϕ/c2
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Inside a Black Hole
'What would it actually be like to fall into a Black Hole?,' asked 

Arthur one day.

'That greatly depends on the mass of the hole.' answered Betty. 'If the 
Earth was compressed in to the size of a marble, it would become a 
black hole, but you wouldn't necessarily fall into it. You could orbit 
around it in your space ship just like orbiting the Earth in the space 
shuttle.'

'Cool. But what would you see?'

'Not a lot. Could you see a black marble at a distance of 4000 miles?'

'No. But this is a Black Hole we are talking about. Wouldn't it have 
any visible effects at all?'

'Yes it would – if you looked at it through a telescope you would see 
that the stars behind it were sort of ' repelled' from it due to the bending 
of starlight as it passed close by. You might even see a complete circle 
of light round it known as an Einstein Ring if there was a bright object 
exactly behind it like this:'

Source: Hubble Space Telescope

'That's cool,' said Arthur, '' but what would the black hole itself look 
like?'

'Suppose you fired a cannister out of the back of the space ship at 
exactly the right speed,' suggested Betty. 'The cannister would now be 
left behind effectively stationary and you could observe it through a 
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telescope as it fell towards the black hole. Obviously it would fall faster 
and faster until it was swallowed up by it – but this is not what you 
would actually see. Suppose also that the cannister emitted a flash of 
light every second: due to gravitational time dilation, as it approached 
what is called the 'event horizon'37 of the black hole, the light would get 
redder and redder and the intervals between the flashes longer and 
longer – so long, in fact that you would never actually see it enter the 
hole, it would just fade from sight. In fact, if you could somehow switch 
off the red shift, what you would actually see on the 'surface' of the 
black hole would be the remains of everything that had ever fallen into 
it!'

'You mean like some sort of cosmic rubbish tip?'

'Exactly so. Every cannister, every shopping trolley, every asteroid 
everything that ever fell into it sort of plastered onto its surface!'

'That's amazing! But I thought black holes swallowed up everything 
in the vicinity.'

'Yes they do. Your cannister does fall into the black hole – it is only 
from your position outside the hole that you can still see it falling. You 
could say that, from your point of view, the inside of the black hole 
doesn't exist. It really is a hole in your universe and from your point of 
view things never actually leave your universe, they just fade away as 
they approach the event horizon. At the event horizon time stops and the 
distortion of space becomes infinite'

'Is that what they mean by a 'spacetime singularity'? A place where 
times stops and space becomes infinite?' asked Arthur.

'Actually that is a very good question and even Einstein was 
confused by it for several decades. No, the event horizon is not where 
the singularity is. The singularity is at the centre of the black hole. There 
the laws of physics completely break down and pretty well everything 
becomes infinite.'

'But it sounds to me as if things get pretty extreme at the event 
horizon.' said Arthur..

37 The event horizon is the surface of a sphere round the black hole of radius 
equal to the Schwartzchild radius Rsch.. See page 107. More precisely, since 
the idea of a radius is problematical owing to the distortion of space near the 
black hole, it is better described as the surface of a sphere which has an area 
of 4 π Rsch

2 .
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'No. That's only how it looks to someone outside. If you were inside 
the cannister you wouldn't notice the event horizon at all. Everything 
would appear perfectly normal – well, at least, almost normal.'

'What do you mean?' asked Arthur.

'Well, since the cannister is in free fall, the person inside wouldn't 
feel any gravity. Like an astronaut in orbit, he would be weightless. But, 
as he got closer to the black hole he would start to feel what are called 
'tidal forces' on him. Those parts of his body which are closer to the hole 
would be attracted more strongly than those parts of his body that are 
further away. In fact he would be first pulled into a vertical position and 
then stretched like a martyr on the rack.'

'How horrible! How close could he get to the hole without being torn 
apart?'

'That depends on the mass of the black hole. In the case of a black 
hole with a mass equal to that of the Earth things would start to get 
pretty uncomfortable at a distance of about 60 km – but then he wouldn't 
have long to live at that point!'

'So you could never get to the event horizon because you would be 
dead before you got there!'

'Not necessarily. If the black hole was really big, the tidal forces are 
relatively small and it would be perfectly possible to take a space ship 
right down to and inside the event horizon. In fact, if the black hole was 
solid and sufficiently massive you could land your space ship and walk 
around on its surface.'38

'Really?'

'Yes. You remember I said that the Schwarzchild radius was 

R sch =
2GM

c2 ' (see page 107).

'Yes – and I queried that factor of 2 as well, didn't I?'

'Yes, you did. But leaving that aside for the moment, the gravitational 

field strength at the surface of a planet or star is g s =
GM
R s

2 . If we put 

38 Betty is stretching a point here. Since it would take an infinite amount of 
energy to take off from the 'surface' of a black hole, it would take an infinite 
amount of rocket fuel to decelerate a rocket and land it.
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Rs = Rsch and eliminate GM we find that R sch =
c2

2 g
. Now putting 

g = 10 ms-2 and c = 3 × 108 ms-1 we deduce that the radius of the black 
hole which has a surface gravity of 1G will be about 4.5 × 1012 km or a 
little bit less than half a light year.'

'That sounds pretty big!'

'Yes, it is. And it turns out to have a mass of about twice the mass of 
the whole Milky Way too – but who is to say that such an object does 
not exist somewhere in the universe?'

'That's pretty cool! So what would it be like to walk on the surface of 
this black hole. You said that gravity at the surface would be 1G so it 
would be just like walking round on Earth. Right?'

'Correct. But it might not be a pleasant place to be all the same.'

'Why not? I suppose all sorts of weird things happen in a place where 
time has stopped and where the distortion of space is infinite.'

'No. You still haven't understood the nature of the event horizon.' said 
Betty. 'Time stops and space is infinitely distorted only from the point of 
view of someone outside the system. As far as you are concerned, time 
flows at its normal rate and the space around you looks perfectly 
normal. The event horizon is what is known as a 'coordinate singularity' 
because it only looks like a singularity from certain points of view.'

'You mentioned the singularity at the centre of the black hole. Is that 
a coordinate singularity too?' asked Arthur.

'Definitely not. That is a real physical singularity and exists 
whichever way you look at it.'

'OK, ' said Arthur. 'So why would walking around on the surface of 
this black hole be dangerous?'

'Well all the light from the other galaxies in the universe would be 
bent so that it fell vertically down; it would also be massively blue-
shifted so it would be like standing under a gamma ray spotlight.'

'Also,' she continued, 'the black hole would probably be sucking in 
gaseous material from the vicinity, all of which would be moving at near 
the speed of light carrying massive amounts of energy. No. I don't think 
you could survive. In any case, I don't think there would be an actual 
surface to walk on.'

128



'Why not?'

'Because, in spite of the huge mass of this object, its density would 
be quite low – about 5 milligrams per cubic metre.'

'So I would just go on falling, would I?'

'Yes – until the tidal forces became too great and you were stretched 
out like a piece of spaghetti.'

'So what would it look like –  actually being inside a black hole?' 
Arthur wondered.

'Frankly nobody knows. And if you went there, you would never be 
able to come back and tell us all about it.'

'Pity. Could it be an entry point into another universe?'

'Well a number of highly respected scientists as well as science 
fiction novelists have explored that idea but, to be honest, your guess is 
a good as theirs. Still, it makes a good story.'
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The Bending of Starlight
'I think I have got a bit further with the bending of starlight problem,' 

said Betty a few days later. 'I asked a question in a physics forum and 
got a lot of responses from people who obviously know a lot about 
General Relativity.'

'That's great,' said Arthur. 'What did they say?'

'Basically they said that if I wanted to understand it, I would have to 
take a post-graduate degree course in General Relativity.'

'That's not very helpful, is it?'

'No. But one of the contributors was a bit more helpful. He (or she) 
said that the bending of light in a uniform field was a local effect and 
was correctly explained by the Equivalence Principle, but the other half 
of the bending was a global effect due to the fact that, as he put it 'A line 
of little labs39 along the light path won't quite fit together the way Euclid 
says they would''

'What does that mean?'

'I take it to mean that the presence of a massive object distorts space 
in such a way that, although locally the bending in each little 'lab' was 
due solely to the Equivalence Principle, when you put lots of little 'labs' 
side by side, they don't align properly and you end up with more 
bending than you expect.'

'Yes, I think I see what he might mean. After all, suppose you made a 
complete set of one inch maps of the whole Earth. Each individual map 
would look perfectly square and reasonable – but if you tried to stitch 
them together, you would soon find that the edges wouldn't line up 
properly because the Earth surface is not flat,' said Arthur.

'I agree. And they weren't very happy about my suggestion that you 
could explain the ordinary 'Newtonian' bending by using the idea that 
light travels more slowly at the bottom of a well than at the top.'

'Why not?'

'Well, there was a lot of mention of coordinate systems and the fact 
that it is much more difficult to define a coordinate system in the 

39 By 'labs' the author of the quote is referring to small local laboratories in 
which experiments on the bending of light etc. can be carried out.
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presence of a gravitating mass in which phrases like 'the speed of light 
at the bottom of the well' have any physical meaning.'

'But this is splitting hairs, isn't it?' Arthur objected, 'Surely if the idea 
that the speed of light varies down the well gives exactly the right result, 
there must be some truth in it, mustn't there?'

'It wouldn't be the first incorrect theory to give the right result. Back 
in 1783 a clergyman called John Michell worked out the Schwartzchild 
radius of a black hole. It was well known that if you gave a projectile 
enough kinetic energy it could completely escape from the surface of a 
planet or star. In fact the 'escape velocity' of a star or planet could be 
calculated from the expression

1
2

m v2 =
GMm

R

By putting v = c and rearranging we get the correct expression for the 
Schwartzchild radius of a black hole: 

Rsch =
2 GM

c2

which even includes the factor of 2 which we are so bothered about!'40

'I see what you mean. But surely we can say that the bending of light 
round a star is analogous to the bending of sound waves over a lake, 
can't we?'

'Personally, I don't see the harm in that, provided we bear in mind 
that at the end of the day, it is only an analogy and that its scope is 
strictly limited.'

'Is there any way we can extend the analogy to cover the spatial 
distortion as well?'

'I have been thinking about that and I think there is' said Betty. 'You 
know you said that the one inch maps would not fit together because the 
surface of the Earth was flat. Well, if you went ahead and stitched them 
together anyway, you would, of course, end up with a pretty good 
approximation to a globe. It turns out that if you stitch together all the 
'little labs' around a gravitating mass you end up with a surface that 
looks a bit like a volcano – like this':41

40 For a comment about the derivation of this formula see the appendix.
41 This surface is known as Flamm's Paraboloid and it is the surface of 

revolution of the curve z = −√R − Rsch where Rsch is the Schwartzchild 
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'If you look at the concentric circles, the circumference of each circle 
differs from the next by the same amount, but as you get closer to the 
origin, the radial separation along the surface gets greater and greater. 
Effectively what this means is that the closer you get to a massive 
object, the further you have to travel to make progress.'

'Is that why to me outside a black hole, it would seem to take for ever 
for my cannister to fall into the hole?' asked Arthur.

'I am sure my physics mentor would run a mile if he heard you say 
that, but it seems to make sense to me. At least, I think it would be 
possible to choose a coordinate system in which it makes sense.'

'I think I am beginning to see what you are getting at. Do you mean 
that light which travels close to the massive object has somehow got 
further to travel?'

'Yes – that is exactly what I mean. You know that old analogy with 
soldiers on parade which explains why light bends at an oblique surface. 
I think we can usefully use the same trick here.

'Suppose a column of soldiers is marching towards us across the 
shoulder of this volcano-like surface. The soldiers all march at exactly 
the same speed, but the soldiers who have to march closer to the origin 
have to climb over a hill and therefore have to march further – like this':

radius.
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'Naturally these soldiers are somewhat held back and the line wheels 
round.'

'That's a great picture!' exclaimed Arthur, 'I don't care if it isn't 
strictly accurate, it really does enable you to visualize how the spatial 
distortions of the 'little labs' which your mentor spoke about fit together 
in a non-Euclidean way to cause the light to bend.'

'Yes, I agree. We can also include the ordinary 'Newtonian' effects as 
well by supposing the the ground gets more and more boggy, the higher 
up the volcano you go. This will cause the soldiers to slow down and 
cause the line to bend even more.'

'Exactly twice as much I suppose,' said Arthur.

'Well I wouldn't go so far as to say that the idea can be made 
quantitative but I do think the analogy is a pretty good one.

'Here is a picture showing both the spatial ('Einsteinian') and 
temporal ('Newtonian') effects at the same time,' said Betty:
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'One interesting fact about this picture is that, when the line of 
soldiers points directly up and down the slope (i.e. radially), all the 
soldiers are marching horizontally. None of them are climbing up or 
down. The only thing, therefore, which causes them to bend is the boggy 
ground effect. In the context of starlight passing a star, when the light is 
travelling at right angles to the gravitational field (i.e. when it is at its 
closest to the star), only the 'Newtonian' or Equivalence Principle effect 
occurs. The bending due to spatial distortion only occurs when there is a 
component of the gravitational field in the direction of travel of the 
light. This explains why you only need to consider the Equivalence 
Principle when considering the bending of light in a lift, or indeed, when 
standing on the ground.'

'I am pretty impressed with your idea,' said Arthur,' but I am a bit 
confused by one thing.''What's that?' asked Betty.

'Well, you often see the bending of starlight explained by using the 
analogy of a rubber sheet weighted down by a heavy weight. This is 
supposed to illustrate how the presence of a massive object distorts 
space around it. Marbles projected towards the weight appear to bend 
just like light and can even be made to orbit the weight just like a 
satellite. Here is a typical picture:'
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Source: Wikipedia

'What I want to know is: is this the same analogy or is it something 
different?'

'My view,' said Betty, ' is that it is a terrible analogy and has nothing 
to do with the distortion of spacetime at all. It does, however, model the 
classical situation reasonably well. The distortion of the weight 
generates an approximation to what is known as a gravitational potential 
well and when a marble rolls past the weight it is acted upon by a 
sideways force which depends on the slope of the well.'

'So if it doesn't model the distortion of space, why do people go on 
using it when trying to explain the bending of starlight?'

'Habit, I suppose. My volcano analogy has nothing to do with 
potential wells. For a start, the shape of the volcano is a paraboloid42 
whereas the shape of a potential well is a hyperboloid43. More 
importantly, it genuinely does represent the way in which space is 
distorted round a massive object.'

'Well, I certainly don't think I am going to get a better understanding 
of why Einstein's prediction of the bending of starlight is twice what 
you would expect. Not without doing a graduate course in General 
Relativity, at any rate!' said Arthur, gratefully.

42 It is the surface of revolution formed by rotating the curve y = −√x − 1

about the y axis and is known as Flamm's paraboloid.
43 The surface of revolution formed by rotating the curve y = −1/ x about the 

y axis.
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Geodesics in spacetime
Everybody knows that 'light travels in straight lines' – but in fact this 

statement is both tautological (i.e. true by definition) and manifestly 
false. Of course, it all depends on what you mean by a 'straight line' and, 
as Betty's mentor was at pains to point out, that all depends on what 
coordinate system you adopt. In General Relativity, choosing the correct 
coordinate system is very difficult, so we can only be sure of getting the 
right answers if we choose to employ only those quantities which are 
independent of the coordinate system. The most important of these is the 
quantity we met earlier (see page 57) called the 'interval' between two 
events which was defined as:

I = √Δ t2
− (Δ x2

+ Δ y2
+ Δ z2

)/c2

and which is a measure of the 'distance' between and event (t, x, y, z) and 
the event (t + Δt, x + Δx, y + Δy, z + Δz) . When an object such as a light 
beam or a satellite makes its way through spacetime, if you add up all 
the little intervals along the way, you end up with what is called the 
'proper time' for the journey.

For example: you will recall that Albert reached Alpha Centauri in 
only 3 years (because the distance to the start was shrunk by length 
contraction) (see page 23). It also took him 3 years to get back. The total 
time for the complete journey was 6 years. This is the proper time for 
the journey.

When he got back he found that his stay-at-home brother had aged 
not 6 but 10 years. This is perfectly consistent because, in Albert's frame 
of reference, his arrival at Alpha Centauri had coordinates (3, 0) while in 
Ludvig's frame, the same event had coordinates (5, 4). the interval 
between these two events (Albert's departure and arrival) is calculated 
by Albert to be √(9 – 0) = 3 years while Ludvig calculates it to be √(25 – 
16) which is 3 years also.

Actually, Albert didn't really need to go to Alpha Centauri at all. Just 
flying at 60% of the speed of light would have been sufficient to make 
his clocks run slow. By the same token, he could – in principle – have 
climbed down a deep well for a while to get the same effect!

The point of all this is to demonstrate the counter-intuitive fact that 
objects in free fall (like Ludvig) undergo a larger proper time interval 
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than objects which take a more roundabout route through spacetime. In 
fact this is a fundamental principle in General Relativity – any object 
which is in 'free fall' (i.e. allowed to move entirely according to the local 
shape of spacetime) follows what is called a geodesic which maximises 
the proper time along the line.

Now, we are reasonably familiar with the idea of geodesics on Earth 
as being the shortest route which an aircraft might take between two 
cities and the line which a string will adopt when stretched across a 
globe. But the idea that a geodesic in spacetime is a line which 
maximises the proper time between two events in spacetime is, to say 
the least, a little strange. It is all to do with that minus sign in the 
expression for the interval – and the vital fact that you cannot exceed the 

speed of light44. The condition 
implies that at every stage on the 
journey the Δt2 term is always larger 
than the ( Δx2 + Δy2 + Δz2)/c2 term. 
Taking extra excursions into the x, y 
and z directions along the way is 
only going to reduce the overall 
proper time.

 Consider the case of a satellite 
orbiting Earth. Since it orbits in a 
plane we can ignore the z 
coordinate and just plot its x and y 
position horizontally and time 
vertically as in the accompanying 
diagram. The satellite is following a 
geodesic route from A to B.

But why does it choose to circle 
the planet four times? Why doesn't 
it just go straight from A to B? The 
answer is that, if it did, it would 
stay in the same place all the time 

44 Whether a geodesic is a maximum or a minimum path is not really relevant. 
What is important is that small deviations from the path make very little 
difference to the distance or proper time. This is true at maximum, 
minimum and stationary points.
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and the proper time interval between the two events would simply be T 
(the time between the two events). But, by taking a more roundabout 
route, the satellite can change the proper time interval between A and B. 
If the satellite takes an excursion to a Mars and back, then, like Albert, 
its proper time will decrease. But it is not necessarily the case that the 
proper time will always decrease. If the satellite were to climb up a bit 
out of the planet's gravity, its clocks would speed up; then, after 
spending a little while there, it could come down again to point B with 
its clocks reading more than T. But the satellite cannot go too far or too 
fast as this would cause its clocks to slow down again. There will, in 
fact, be an optimum trajectory which takes the satellite out and back 
such that the proper time, as recorded by its on board clocks, is the 
maximum possible. The route described here is not an orbital route, it is 
what might be described as a 'ballistic' (out and back) route. It turns out, 
however,  that there are many ways of getting from A to B along a 
trajectory whose proper time is a maximum, just as there is often more 
than one way of traversing a mountainous landscape in the shortest 
possible distance.

 Suppose, for example, you wish to walk from A to B across the map 
shown above. The direct route would take you right over the top of the 
mountain and, quite apart from the extra effort involved in climbing it, 
the distance walked would be greater than the straight line distance 
between A and B. The two blue routes are shorter because although they 
wiggle sideways, they do not go up and down so much.
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Each blue route is the shortest possible route on that side of the 
mountain. The vital point here is that small deviations from the route 
will always result in a longer journey. Each route is a local minimum. 
True, one route is probably longer than the other – but both routes are in 
a sense the best possible way of getting from A to B.

Similarly, the satellite has many ways for getting from A to B and by 
choosing a route which goes round the back of the Earth one or more 
times, the satellite can maximise the proper time. Some of these orbits 
will be elliptical; the one illustrated with four circuits of the Earth is 
circular. Locally each route is a maximum and therefore each is a 
perfectly valid geodesic between A and B. (Which one the satellite 
actually takes depends on the speed and direction with which the 
satellite is launched at A.)

The geodesic which is followed by light is special because the proper 
time interval between any two events along the path of a ray of light is 
precisely zero. If a light ray starts off at (0, 0) it will reach a point at a 
distance x in a time t = x/c. The interval between (0, 0) and (x, x/c) is 
√ x 2

/c2
− (x2

+ 0 + 0)/c2
= 0 .  We cannot therefore use the 

'maximise' rule to determine the path taken by a ray of light. But there 
again, we do not have to. One of the fundamental principles of 
Relativity is that the speed of light is constant. All light-like geodesics, 
therefore, point at 45° to the temporal axis by definition.
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Part 5: Cosmology
The Expanding Universe

We have known for a long time that the universe is expanding. 
Virtually all the galaxies which we can see beyond our own local group 
(which includes the Andromeda galaxy) show a red shift implying that 
they are receding from us and initial measurements suggested a simple 
proportional relationship between recessional velocity and distance.

This should not surprise us. One of the most fundamental 
assumptions that we are used to make about the universe is that it is a) 
homogeneous (i.e. the same everywhere on a sufficiently large scale) 
and b) isotropic (the same in all directions). Consider three equally 
spaced galaxies in a line. G0 (our own) may be considered stationary; G1 

gas a velocity v1 and G2 has a velocity v2. By the principle of 
homogeneity, G1 must be receding from G2 at the same speed as G1 is 
receding from G0 so v2 – v1 = v1 and v2 must be twice v1. In other words, 
the recession velocity must be proportional to distance. We infer that at 
the current instant in time

v recession = H 0 D

where H0 is a constant called the Hubble constant. The value of this 
constant is currently thought to be about 70 km/s per megaparsec or, 
more usefully, 7% of the speed of light per billion light years. If we 
were to assume that this recessional speed has been constant, then it is 
easy to calculate that all the galaxies must have been in the same place 
about 14 billion years ago.45

The big questions we must answer are, first, how is this possible? 
Second, how far into space can we see? and third, what is the evidence? 

In 2012 NASA released an image – the Hubble Extreme Deep Field 
– of an apparently completely empty area of the sky which was the 
result of many hundreds of 20 minute exposures taken over a period of 
10 years.

45 1 megaparsec = 3,300,000 light years; the speed of light is 300,000 km/s; 70 
km/s per megaparsec is therefore 70/3300000/300000 = 7 × 10-11 c per light 
year or 0.07 c per billion light years. 1/0.07 = 14.
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 The image is about 2 arc minutes across – about the size of a large 
crater on the Moon.  It shows over 5000 galaxies but how far away are 
they and how fast are they moving away from us?

The first problem is that some of the small faint ones may, in fact, be 
relatively close. It is almost impossible to measure the red shift of these 
galaxies directly (a process which requires identifying specific spectral 
lines in the spectrum of the light) as they are incredibly faint. 
Fortunately, the image above is a composite of several images taken 
using different filters, one of which was an ultra violet filter. Any 
reasonably close galaxy will show some emission in the UV part of the 
spectrum but a very distant, highly red shifted galaxy will not show any 
UV. Once you have weeded out the nearer ones, a simple measurement 
of the size and brightness of the remaining ones will give an estimate of 
their distance. Some of them, it is believed, are seen as they were  less 
than a billion years after the big bang.

The standard method of measuring the distance to a distant galaxy is 
to look for a supernova in it and measure its brightness. It is clearly 
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impossible to do this with any of the galaxies in the above image but the 
distances to hundreds of galaxies with red shifts46 of up to 2.5 have been 
measured by this method.

Another method of measuring the distance to a distant galaxy is to 
monitor the incredibly violent bursts of gamma rays which are emitted 
when a star suddenly collapses into a neutron star or a black hole. The 
galaxy from which the burst came from can then be studied in detail and 
some of them have been found to have red shifts of up to 8 or even 
more.

The question is – does the simple proportional relationship between 
recessional velocity and distance extend out this far?

The first problem which has to be addressed is the simple fact that 
we do not see distant galaxies as they are now but as they were when 
they emitted the light which we can see. This makes things very 
confusing. Fortunately, however, there are a number of things which we 
do not have to worry about. Firstly, we do not have to worry about 
space-time curvature. As far as we can tell, our universe is spatially flat 
47(hooray!). This means that two light beams which set out parallel (or 
indeed at any angle) will remain parallel (or at the same angle) for ever.

Secondly we do not have to worry about length contraction or time 
dilation (at least, not much). This is because there is an important sense 
in which, on a cosmological scale, the galaxies can all be regarded as 
being stationary.

Thirdly, we can, without assuming anything specific, place ourselves 
at the origin because, if the universe is the same everywhere, any place 
can be regarded as an origin.

So let us start our exploration of our expanding universe with the 
classic picture of a possible universe – one which is infinite in extent 
and absolutely the same everywhere. Its geometry is strictly Euclidean 

46 Throughout this book I shall use the physical definition of red shift Z = λ/λ0. 
Astronomers generally use the definition z = Δλ/λ0. To convert one to the 
other use  Z = z + 1.

47 There has been much popular speculation about spatially 'closed' universes 
which are finite like the surface of a sphere or temporally 'closed' universes 
which end in a big crunch but, as far as we can tell, we live in a flat universe 
which is infinite in extent both in space and (in the forward direction at 
least) also in time
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and we can imagine it to be populated with an infinite number of 
identical galaxies all exactly the same distance apart. Something like 
this:

If this universe is static a serious problem arises. In whatever 
direction you look you ought to see a galaxy and the night sky should be 
as bright as the sun. But, if the universe is expanding, this problem is 
resolved because the most distant galaxies will be red-shifted out of 
sight. 

Now the popular (but as we shall see, incorrect) picture is of a 
massive explosion which happened about 14 billion years ago when the 
universe was infinitely dense and when, in a sense, all the galaxies were 
in the same place, here, at the origin. Assuming for the moment that this 
is correct, and if we ignore the condition of special relativity that 
nothing can travel faster than light, it is easy to see that the relation 
between velocity and distance is simply

v =
D real

T 0

where T0 is the time after the Big Bang.

But a galaxy which is currently at a distance Dreal from us will not 
appear to be at this distance because the light which it emits has to get 
back to us. The light we can see was actually emitted when the galaxy 
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was at a smaller distance Dapparent from us. The galaxy took a time 
Dapparent/v to get to the point where it emitted the light and the light took 
Dapparent/c (where c is the velocity of light) to get back to us. We therefore 
have 

Dapparent

v
+

Dapparent

c
=

Dreal

v
= T 0

from which we can deduce that

Dreal =
D apparent × cT 0

cT 0 − D apparent

We must also remember that since the more distant galaxies are 
receding faster, they will show a greater red shift and, in fact, any galaxy 
which is moving faster than light (a theoretical impossibility anyway) 
will be red shifted out of our vision.

In short, out universe will look something like this:

Distant galaxies would appear more numerous and closer together 
but they will appear to have the same angular size which you would 
expect them to have at that distance because the universe we are 
considering is flat (i.e. Euclidean). They will, however, be more and 
more red shifted and will eventually be red-shifted out of sight. The 
observable horizon will be at a distance of ½ cT0 (i.e. about 7 billion 
light years) and even those galaxies at the extreme limits of our vision 
cannot have a value of Dreal greater than 14 billion light years.
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If we assume that the red shift is due to the standard formula that the 
guard and the station master worked out when they were discussing the 
colour of the signal (see page 66) we can show that

v = c × ( Z 2
− 1

Z 2
+ 1) =

Dreal

T 0

A graph of 
Z 2 − 1

Z 2 + 1
against Dreal should therefore be a nice straight 

line through the origin. 

Unfortunately, measuring the (apparent) distance to even moderately 
distant galaxies is fraught with difficulties. The standard method is to 
use the periodicity of what is known as a Cepheid variable. This 
determines its absolute brightness. By measuring its apparent brightness 
its distance can be calculated. For galaxies which are too far away for 
individual stars can be resolved, other methods have to be used such as 
monitoring the light output of certain types of supernovae and, for really 
distant galaxies, the output of what are known as gamma ray bursts.

  Notwithstanding all these difficulties, it is clear that the data do not 
fit the observed facts. Below is a graph of (z2 – 1)/(Z2 + 1) against the 
(adjusted) real distance for about 300 galaxies whose apparent distance 
from us have been measured using the gamma ray burst technique. 
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The first thing to strike one about this graph is the huge scatter of 
points about the expected trend line. If, however, we discount the dozen 
galaxies which either show an abnormally high red shift or look too far 
away, it is clear that, for the great majority of galaxies, the recession 
velocities (as calculated by the standard relativistic formula) are too 
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slow; alternatively we can say that the majority of galaxies are further 
away than they ought to be. (Indeed, a few galaxies, not plotted on the 
graph) are so faint, they appear to be beyond the theoretical limit of 13.8 
billion light years.

The flaw in the model is that assumption that the red shift of a distant 
galaxy is due to the speed of recession of the galaxy at the time the light 
is emitted. For nearby galaxies which are moving at much less than the 
speed of light, the approximation is a good one, but, when we are 
considering more distant galaxies, we must look for a new idea. The 
new idea is this: the galaxies are not moving away from us at all! What 
is actually happening is that the scale which we use to measure 
distances is getting smaller.

It is as if, on a certain day we measure the length of a race track and 
find it to be 100 m. A year we measure it again and we find that it is 110 
m – not because the race track is longer than before but because our tape 
measure has shrunk.

An even better analogy is this. Suppose that one day a gold bar is 
valued at £10,000. A year later, however, it is valued at £11,000. The 
gold bar isn't really any more valuable than it was before – it just costs 
more because the value of the £ has fallen.

One image that is often used to illustrate an expanding universe is the 
image of a balloon being blown up. Spots on the balloon represent 
galaxies. The balloon expands but the spots themselves do not, only the 
space between them increases. 

This picture is seriously misleading in two ways. Firstly it seems to 
suggest that the universe has to be curved. This is emphatically not the 
case. Our universe is (as far as we can tell) spatially flat and therefore 
probably infinite48. Secondly, it gives the impression that if the 
expansion rate was fast enough, an ant crawling round the balloon at a 
constant speed might be unable to reach a target spot because the spot 
would always be receding from it faster than it could approach. This is 
sometimes true, but not always, and not in the most important case as 
we shall see.

So to rid ourselves of any misconceptions about receding galaxies, 

48 It is mathematically possible to conceive of a flat universe which is 
unbounded and yet finite but there is no reason to suppose that our universe 
is like this.
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let us agree on a new unit of distance, the cosmological light year or cly. 
We shall also agree that on the 1st of January 2000 CE (i.e. now in 
cosmological terms) 1 cly = 1 ly. A galaxy which is 1 Bly (billion light 
years) away from us now is also 1 Bcly away from us. Let us also agree 
to use the letter θ to represent distances in cosmological light years and 
D to measure normal distances.

Now the whole point about cosmological light years is that the 
galaxies do not move and distances measured in cosmological light 
years never change49. What changes is the exchange rate between 
cosmological light years and ordinary light years. We therefore have

D = aθ

where a is the exchange rate between cosmological light years and 
ordinary light years.

Now, in general a is a function of time and in an expanding universe, 
it increases with time. The more time passes, the bigger a gets and the 
greater the measured distance D becomes between two galaxies 
separated by a fixed cosmological distance θ.

When a photon moves through this expanding space, every year it 
moves though 1 ordinary light year. But as a increases, the rate at which 
it moves through cosmological space (in cly per year) decreases. 
Mathematically we say that

d θ
dt

=
c
a

where c is the velocity of light.

Basically what we are saying is that the rate at which a photon moves 
through cosmological space gets slower and slower. It also means that in 
the past, light moved through cosmological space faster than 1 cly per 
year. This does not violate Special Relativity because at all times, the 
light travels one ordinary light year in a year.

We now need to make an assumption about how a changes with time. 
The simplest assumption is that it increases linearly i.e. a is proportional 
to time t. At first sight it would appear that this assumption is exactly the 

49 What I call the 'cosmological distance' is known to astronomers as the 
'comoving distance'. By definition, the 'proper distance' to a galaxy at this 
time is equal to its 'comoving distance' but as time proceeds, the 'proper 
distance' increases while the 'comoving distance' stays the same.
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same as the classical model which we analysed earlier because it implies 
that the rate at which the real distance between us and a certain galaxy is 
increasing is proportional to its distance from us – but this is not the 
same as saying that the galaxies are moving away from us at a speed 
which is proportional to the distance. In the classical universe, the 
galaxies were actually moving through fixed space (and violating the 
laws of special relativity too!). In this case, the galaxies are fixed; it is 
the scale of the universe which is changing.

To put it another way, in the classical expanding universe, at any 
given instant, the speed of recession is proportional to Dreal (and since 
speeds cannot exceed the speed of light, galaxies with Dreal greater than 
cT0 do not exist); but in the relativistic universe, it is the rate of increase 
of Dreal which is proportional to Dreal and it is perfectly possible for 
galaxies with Dreal greater than cT0 to exist.

If you still think that this is just mincing with words, it is not; it 
makes a big difference in two ways. First it makes a difference to the 
length of time it takes for a photon to cross the gap between the distant 
galaxy and ourselves; and second, it makes a big difference to the 
observed red shift. Imagine a lorry load of soldiers travelling away from 
you at a constant speed of 20 mph. Every few seconds a soldier jumps 
out of the lorry and runs back towards you at 10 mph. Obviously the 
soldiers will take longer and longer to reach you because each 
successive soldier has a greater distance to run (this is the classic 
Doppler effect) but the soldiers will have no difficulty in reaching you 
because they are all running towards you at 10 mph. This is the classical 
view of an expanding universe.

Now, suppose instead that there is a huge rubber belt connecting you 
to the receding lorry and that the soldiers have to run back to you along 
the belt. At the instant one of the soldiers jumps out of the lorry onto the 
belt, even though he is running towards you at 10 mph, the belt is 
carrying him away from you at 20 mph so, initially at least, he will still 
be moving away from you. The question is – will he ever reach you? 

The astonishing answer is – yes, he will eventually get to you 
regardless of the speed of the lorry! (But obviously it will take him a lot 
longer than it would have done in the classical case.) It is true that, 
initially the belt will be carrying him rapidly away from you but in time, 
as he makes his way down the belt, the speed of the expanding belt will 
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reduce (remember the speed of the lorry is constant so the speed of the 
belt at any point along it will be a proportion of this speed) and 
eventually he will be able to make real progress towards you.

What we need is a mathematical formula relating the real distance 
which is travelled by a photon which sets out at a time T1 and reaches its 
destination at a time T2. But to get this we have to do a tiny bit of serious 
mathematics.

Since we have agreed that a  = 1 when t = T0 (where T0 is the age of 
the universe) we have

a =
t

T 0

hence d θ

dt
=

c
a

=
c T 0

t

In order to find the distance between the galaxies (in cosmological 
light years) we must integrate this expression from T1 to T2. The result is

θ = ∫
T1

T2 c T 0

t
dt = c T 0log

T 2

T 1

(where the logarithm is the natural logarithm to base e).

Now, what we are really interested in is the situation when the 
second galaxy is our own and when T2 is now – i.e. when T2 = T0. We are 
not really very interested in the cosmological distance θ either; what we 
really want to know is the ordinary distance – i.e. the actual distance to 
the galaxy now. But remember – we have agreed to make the exchange 
rate unity now, so Dreal = θ. 

Putting these facts into the last equation we arrive at the following 
important expression 

θ = Dreal = cT 0 log
T 0

T 1

(A)

This result has a number of surprising consequences. First the log 
function increases without limit as T1 decreases.  Therefore, as T1 
approaches zero (the big bang), Dreal approaches infinity. Technically, 
therefore, in the linearly expanding universe, every galaxy that has ever 
existed is visible to us! To put it another way, here is no observable 
'horizon' in this sort of universe.
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Second, any galaxy which is sufficiently far away (so that log T0/T1 
>1) is now at a greater distance from us than the distance which light 
could have travelled in the whole age of the universe. The corollary of 
this is that, since all the galaxies were essentially in the same place 
when the universe began, the distance between us and such a galaxy 
must be increasing at a rate which is greater than the speed of light. This 
sounds absurd, but it is not. Remember the soldiers running at 10 mph 
away from a lorry travelling at 20 mph? Initially, they start by going 
backwards but, eventually, they reach that part of the belt which is only 
moving at less than 10 mph and then they can make more and more 
rapid progress towards their destination. Remember also that the galaxy 
is not moving through space at a speed which is greater than the speed 
of light, it is just that the space between us and the galaxy is increasing 
rapidly.

But this equation does not tell the whole story. It should be 
remembered that when we take a picture of the night sky, we are not 
seeing the galaxies as they are now but as they were when the light left 
them. Since the universe has expanded by a factor  T0/T1 since then, the 
distance which we will actually see Dapparent is less than Dreal and given 
by:

Dapparent = D real

T 1

T 0

= c T 1 log
T 0

T 1
(B)

This is a remarkable result and deserves some study. First let us 
remind ourselves that it applies specifically to a flat universe whose 
scale factor a increases linearly with time. As it happens, this is a fairly 
good approximation to our own universe but there are other 
possibilities. Next, lets tease out some of its implications. Firstly lets 
take a look at the shape of this function.
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The graph shows the apparent distance of galaxies whose light we 
can see Dapparent (i.e. all of them!) as a function of the times since the big 
bang at which the light left them T1.

The weirdest thing about this graph is that it has a maximum. As we 
look further and further back in time, the galaxies apparently get further 
away and smaller, but galaxies whose light left them earlier than about 5 
billion years after the big bang start to look closer and get bigger! The 
reason for this is simple. When the light left them they were closer and 
therefore looked a lot bigger! However, although they were close to us 
at that time, they were quite a long way away in cosmological terms, so 
it has taken a long time for their light to reach us.

In summary, there are three quantities of interest when we examine a 
galaxy given the time T1 at which the light we can see left the galaxy: 
Dreal (equation A). Dapparent (equation B) and the angular size of the 
galaxy (assuming that all galaxies are the same size) which is 
proportional to 1/Dapparent. Plotting all three quantities against T1 gives us:
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1Take a look back at the Hubble Extreme Deep Field image on page 

141. Halfway up on the left hand side there is a lovely spiral galaxy 
which looks very similar to the Whirlpool galaxy M51.

Whirlpool Galaxy M51
NASA, ESA, S. Beckwith (STScI) and the Hubble Heritage Team 
(STScI/AURA)
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Now, the Whirlpool galaxy is 31 million light years away and 
subtends an angle of about 10 minutes of arc (one third of the size of the 
full moon). The galaxy in the Hubble image subtends an angle of about 
0.075 minutes of arc. If we assume that the two galaxies are about the 
same size, the galaxy in the image ought to be 130 times further away – 
i.e. about 4 billion light years away.

But this simple calculation is flawed because it does not take into 
account the expansion of the universe. It looks as if it is 4 billion light 
years away based on its angular size – but there are two possible 
solutions to the equation for T1 given that Dapparent = 4 billion light years.

From equation (B), and remembering that if we work in years and 
light years, c = 1, we have

4 = T 1log
14
T 1

and the solutions to this are T1 = 8.5 billion years and 2.2 billion years.

Substituting these figures into equation (A) we find that the galaxy 
could either be 6.7 billion light years or 25.3 billion light years away – it 
would look the same size in either case. Only by looking at its spectrum 
(particularly in the ultra violet region) can we tell which it is.

If it is 6.7 billion light years away, then it is receding from us at 
nearly 50% of the speed of light50. If it is actually 25.3 billion light years 
away, then it is receding from us at getting on for twice the speed of 
light51 and light started out on its journey to us when the universe was 
only 16% 52of its present age!

Of course, these figures are illustrative only as they depend on the 
arbitrary assumption that the galaxy in the image is the same size as 
M51.

50 6.7 / 13.8 × 100 = 48.5% 
51 25.3 / 13.8 × 100 = 183%
52 2.2 / 13.8 × 100 = 16%
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Cosmological Red Shift
The evidence for an expanding universe is simple and compelling. 

The further away a galaxy appears to be (on the basis of its brightness 
and angular size) the more its light is red-shifted. The red shift of a 
galaxy is measured by comparing the wavelength of a recognizable line 
in its spectrum with the wavelength of the same line as measured in the 
lab on Earth. If the measured wavelength is λ and the original 
wavelength is λ0, then the red shift Z = λ/λ0

53. This number starts at 1 
and increases without limit.

If we interpret the red shift, not as a Doppler shift, but as a measure 
of the amount by which the universe has expanded since the light was 

emitted from the galaxy, then we can simply put Z =
a (T 2)

a (T 1)
where 

a(T1) and a(T2) are the scale factors of the universe at times T1 and T2.

In a linearly expanding universe, a is simply proportional to t so we 

can simplify this to Z =
T 2

T 1
where T1 is the time the light was 

emitted by the galaxy and T2 is the time it arrived.

On page 149 we proved that in a linearly expanding universe the 
cosmological distance travelled by a photon between the T1 and T2 was

θ = c T 0 log
T 2

T 1

(equation A)

from which we can infer that
θ = c T 0 log Z

or

Z = eθ/ cT 0 (C)

In other words, in a linearly expanding universe, the red shift of a 
galaxy depends only on its cosmological distance from us and since that 
never changes, its red shift will not change either throughout the history 
of the universe.

53 Astronomers define red shift as z = (increase in λ)/λ  which implies that z  = 
Z – 1. When talking about cosmological distances, Z is preferred to z but it 
must be remembered that in all astronomy books, z will be quoted, not Z.
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More specifically, since by definition, at this time Dreal =  θ, our 
expected relation between Z and Dreal (equation (A) on page149) 
simplifies to 

Dreal = cT 0 log Z

and if our model of a linearly expanding universe is correct, a graph of 
the natural logarithm of Z against Dreal ought to be a nice straight line 
through the origin.

Comparing this graph with the one on page 145, the improvement is 
immediately apparent54. The reason for the huge scatter is, of course, the 
immense difficulty in measuring the distance to the most distance 
galaxies but, notwithstanding the size of the potential errors, the data are 
at least compatible with the idea that the universe has expanded linearly 
over time since about 14 billion years ago.

But this is not the only possibility. Einstein's theory predicts that 
such a linear relationship is actually only true of a completely empty 
universe! For a universe which contains a preponderance of matter, it 
turns out that a is proportional to t2/3. In this case the relation between D 
and Z turns out to be:

D = 3cT 0 (1 −
3
√1/Z )

54 Especially since the graph includes a number of galaxies whose adjusted 
distance is greater than 14 billion light years and which would, theoretically 
not be visible at all in a classical universe.
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The appropriate graph is shown below. It is clear that, on this model, 
the most distant galaxies consistently show a smaller red shift than we 
would expect.

Finally, consider a third possibility which is consistent with 
Einstein's equations and which is characteristic of a universe which has 
a large cosmological constant. In this case the scale factor increases 
exponentially with time and the relation between D and Z turns out to be 
particularly simple:

D = cT 0 (Z − 1)

The graph of (1 – Z ) against D is:

This graph shows exactly the opposite effect – distant galaxies 
showing a greater red shift than we would expect.
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The basic problem is that none of these three models fits the data all 
the time, because the character of the universe has changed during the 
course of its evolution. In the early stages it was dominated by matter  
which caused a rapid expansion according to the 2/3 power law. Then, 
as the density of matter reduced, the rate of expansion of the universe 
slowed down.  After about 5 billion years the rate of expansion started to 
speed up again and the universe is now believed to be expanding 
exponentially. This model is known as the ΛCDM model (pronounced 
'lambda-C-D-M') which juggles with the various parameters in 
Einstein's Field Equations – notably the cosmological constant Λ which 
determines the amount of 'Dark Energy' in the universe and the amount 
of Cold Dark Matter in the universe – to get the best possible fit with the 
astronomical data. It is also believed that at some point during the first 
10–32 seconds, the universe underwent a period of extremely rapid 
expansion known as inflation. The theoretical consequences of this 
assumption explain the observed characteristics of the universe 
remarkably well but the cause of this expansion is unknown. (One is 
inevitably reminded here of the ad hoc way in which Ptolemy juggled 
with his epicycles to 'save the appearances' of the orbits of the planets!)

NASA has published the following image which is supposed to 
illustrate the history of the universe since the big bang, but it grossly 
over emphasises the inflationary phase of the expansion by using a 
disgracefully non-linear scale in both the temporal and spatial 
dimensions.

NASA/ LAMBDA Archive / WMAP Science Team 
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A much more informative illustration is to be found in Wikipedia 
which compares several different possible scenarios, all of which are 
compatible with Einstein's equations.

By Geek3 - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=58089339

Almost nobody believes that we live in a closed universe. In the first 
instance, it puts the age of the universe at only 6 billion years – a period 
of time which is too short to allow the development of the present 
distribution of stars and galaxies. Second, it requires the presence of far 
more matter than we can currently observe (although, to be fair, so does 
the currently accepted  ΛCDM model).

The 'Einstein de Sitter' universe (the green line) also predicts an 
uncomfortably short age of the universe and, as we have seen, neither 
this nor the 'exponential' universe fits the red shift data.

 The  ΛCDM universe (represented by the red line) begins by 
expanding exponentially for a very short while (much too short to be 
visible on the graph), then settles down to a period of gradually slowing 
expansion in which matter predominates; after about 5 billion years the 
expansion rate becomes approximately linear and and now it appears to 
be entering a phase of slow exponential expansion. By a sheer fluke, the 
age of the  ΛCDM universe turns out to be almost exactly the same as 
the age of the linear universe (based on extrapolating back the apparent 
recessional speeds of nearby galaxies). It is for this reason, therefore, 
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that to a good approximation, we shall not go far wrong if we assume 
that the expansion has been linear, that the age of the universe is about 
14 billion years and that the relation between red shift and proper 
distance is approximately Dreal = c T 0 log Z  – at least for Z less than 
about 5.

The red shift of the most distant galaxy measured to date (2021) 
(GN-z11) has a red shift of Z = 12 (i.e. z = 11) which, using the 
currently accepted value of T0 as 13.8 billion years, puts its current 
distance (Dreal) at 31 billion light years (according to the current model). 
The light which we are receiving from this galaxy started off on its 
journey about 1 billion years after the big bang and its recessional speed 
is (and always has been) over twice the speed of light.

The Cosmic Microwave Background Radiation started off as 
radiation at about 3000K. Its temperature has now dropped to 2.7K – so 
it has been red shifted by a factor Z = 1100. This puts the proper 
distance (Dreal) to the CMBR to about 44 billion light years. In practice 
this is the limit of the visible universe, because everything behind the 
CMBR is shrouded in a plasma fog. (But recently it has been suggested 
that we might be able to use gravitational waves to peer behind this 
curtain.) 

It is sometimes suggested that during the inflationary period “the 
universe expanded from much much smaller than a proton to about the 
size of a grapefruit — an increase in size of at least 1078, or in plain 
English, a million times a million, and repeat 11 more times.”

Quote taken from 'Dr Karl's Great Moments in Science' web page 
https://www.abc.net.au/science/articles/2013/08/06/3818354.htm

This is seriously misleading. As far as we know the universe is 
infinite – and always has been. It is true that the scale of the universe 
may have expanded by a factor of 1078, but it never was the case that the 
universe was the size of a proton or a grapefruit, it was just incredibly 
dense.

There is, however, some sense in talking about how a well defined 
part of the universe has grown in size, but we must first define what part 
of the universe we are considering. A natural outer limit to what we 
might regard as 'our' part of the universe is the sphere of radius cT0. In a 
linearly expanding universe, this volume contains all the galaxies whose 
recession velocities are less than the speed of light and whose red shifts 
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are less than Z = 2.718... (z = 1.718...). It is known as the Hubble 
volume or Hubble sphere. Obviously the Hubble sphere currently has a 
radius of 13.8 billion light years.

At the time of the decoupling event when the CMBR was created, 
the universe was 1100 times smaller than it is now and the Hubble 
sphere therefore had a radius of 12.5 million light years which is about 
the distance to one of our nearer galactic neighbours outside the Local 
Group.

If we consider the time when the Hubble sphere was the size of a 
grapefruit we are talking about a time after the big bang equal to the 
time it takes for light to travel about 6 cm, which computes to 0.2 ns.

I am afraid I can muster little enthusiasm for discussions about the 
behaviour of the universe at these extreme times. All proper science 
should, I believe, be based ultimately on experimental evidence. The 
most energetic collisions which we can currently observe in laboratories 
like CERN are of the order of 13 TeV. This energy translates into a 
temperature of 1017 degrees Kelvin. If we assume an inverse relation 
between the scale of the universe and temperature, the universe was this 
hot about 4 seconds after the big bang when the Hubble sphere was 
about twice the size of the Sun. What happened before this time is, in 
my opinion, pure speculation and has little, if any, scientific value.

There is, however, one speculation which I will indulge in.

One of the most serious objections to the current ΛCDM model is 
that it started in a singularity. Usually, theories which contain 
singularities are regarded with extreme suspicion but the Big Bang 
singularity appears to have been accepted as part of life and persistent 
questions from lay persons about what caused the Big Bang or what 
happened before the Big Bang are brushed off with remarks like 'There 
was no before. The Big Bang was when Time started.'

My suggestion is that the period of exponential inflation, which is 
supposed to have ended when the Hubble sphere was the size of a 
grapefruit, didn't start when the universe was the size of a proton but 
when it was of zero size. This puts the time of origin of the universe 
back to minus infinity (because the exponential curve decreases to zero 
is asymptotically in the negative direction) and neatly avoids all such 
uncomfortable questions. (It doesn't remove the singularity, though.)

Just a thought.
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The Shrinking Universe
'Let me get this right' said Arthur as he and his sister were returning 

from a lecture on cosmology. 'Am I to understand that, if we accept that 
the universe has been expanding approximately linearly from about 13.8 
billion years ago, then galaxies with red shifts than 2.718...  are receding 
from us faster than the speed of light?'

'Yes, that's absolutely right.' answered Betty. 'Not only that, these 
galaxies have always been receding from us faster than light, even when 
the light was emitted.'

'How is that possible?' asked Arthur.

'Initially, the light will be carried away from us by the expansion of 
the universe ,but, just like the soldiers on the rubber track55, eventually 
the light will reach a point where the universe is not expanding so fast 
and it will start to make real progress.'

'Yes I sort of get that – but it seems that you are arguing round in 
circles. Surely, since nothing can travel faster than light, it follows that 
there can't be any galaxies whose  Z is greater than 2.718..'

'There are two things to say about that. In the first place there are 
dozens of galaxies with Z  >  2.7. But more importantly, it appears that 
you still haven't quite shaken off the idea that these galaxies are moving 
through space. They are not. Apart from small local movements, the 
galaxies are essentially stationary in cosmic space. It is only the distance 
between them which is changing.'

'So why do we go banging on about an expanding universe? Surely it 
would be better to talk about a shrinking... something?'

'I entirely agree.' said Betty. 'You are quite right. The universe isn't 
actually expanding. You could, with equal justification, say that it is 
everything in it which is shrinking.'

'Including atoms and stars?'

'Yes. But remember, all our rulers are shrinking too so the measured 
diameter of an atom or a star remains the same. Basically the only thing 
which measurably changes is the wavelength of a photon which spends 
an appreciable amount of time in transit.'

55 see page 148
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'Perhaps the idea of an expanding universe is easier to accept after 
all,' said Arthur. 'But what I don't get is this; if the universe is 
expanding, why don't the atoms and stars in it expand too?'

'Let's get one thing straight. In so far as fundamental particles like 
protons and electrons have a size at all, their size is determined by the 
fundamental constants of nature, in particular the Planck length and the 
Planck time56. If these remain constant over time, then the size of these 
particles will remain the same. Atoms and galaxies, however, are 
complex systems bound together by electromagnetic and other forces.

'There is something else we should get straight too. It is very 
tempting to think that there must be some sort of force causing the 
objects in the universe to move apart. This is not so. In a linearly 
expanding universe, all the comoving objects in it are stationary with 
respect to the universe and merely 'coasting along' with what is called 
the 'Hubble flow'57.

'So what limits the effects of gravity?' queried Arthur. 'Why is the 
Andromeda Galaxy considered to be gravitationally bound to us while 
galaxies further away are not?'

You are quite right. There is no theoretical limit to the effects of 
gravity – but there is a point at which its effects become negligible.'

'Is there any way we might get some idea of the size of this limit?'

'Well, you could argue that when the recession velocity of a distant 
galaxy exceeds the escape velocity of our own galaxy, then the distant 
galaxy is effectively beyond the gravitational influence of the Milky 
Way.'

'Can you put some figures in?'

'Yes. But first we need to do a bit of algebra. The escape velocity at a 
distance D from an object of mass M is √2GM /D 58. The velocity of 
recession is simply D/T0 where T0 is the age of the universe. If we put 

56 The Planck length is defined as √ h G

2π c
3 and is equal to 1.6 × 10-35 m. The 

Planck time is defined as √ h G

2π c5 and is equal to 5.4 × 10-44 s.

57 If the scale of the universe is accelerating or decelerating then there is a 
kind of cosmological force but that does not concern us here.

58 For a simple proof see the appendix.
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these equal we find that D =
3√2GMT 0

2  

'That's not going to be easy to calculate. Give me a minute while I 
look up the figures and do the calculations.' said Arthur.

'Okay, I have done it.' he said a few minutes later. 'The answer comes 
to 4.5 million light years.'

'That's good.' said Betty. ' The Andromeda galaxy is part of our local 
group of galaxies and that is 2.5 million light years away. The nearest 
sizeable galaxy outside our local group is NGC500 which is about 6 
million light years away – just outside the influence of the Milky Way. 
Mind you, the influence of the Local Group as a whole and the cluster 
of galaxies of which it is a part means that the true limit is more like 100 
million light years.'

'That's fascinating. I think I am getting a much better picture of what 
it means to live in an expanding universe. But there is still something 
niggling at the back of my mind.'

'What's that?' asked Betty.

'I can see now why atoms and small groups of galaxies are not 
affected by the cosmological expansion, but I still don't see why photons 
expand.'

'That is a very good question.'

'Could it be that photons, sort of, get tired as they travel through 
space and lose energy that way, increasing their wavelength in the 
process?'

'No. I don't think so,' said Betty. 'You must remember that quantities 
like energy and wavelength only have meaning with respect to some 
observer. When an atom of hydrogen on a distant star emits a photon of 
light of wavelength 656.3 nm, this is the wavelength that would be 
measured by someone in the same locality and in the same inertial 
frame. When this photon is detected ages later when the universe has 
expanded by a factor of 2, its wavelength will be measured as 
1312.6 nm, not because the photon is really any different but because 
the observer doing the measuring is not in the same inertial frame. 
Relative to the universe, his rulers have shrunk by a factor of 2 and so 
he sees the wavelength as being longer.'

'I don't buy that at all.' objected Arthur. ' You haven't really explained 
why the wavelength of the photon doesn't shrink (relative to the 
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universe) like all the atoms in the observer's ruler. It seems that you are 
applying one rule to atoms and another to photons.'

'I admit you have a point there,' conceded Betty. 'I think the vital fact 
is that photons can be Doppler shifted in a way that atoms and other 
particles can't'

'What do you mean?' asked Arthur.

'Well, as you know, the standard relativistic formula for the Doppler 
shift of a photon emitted by a source receding from you at a speed v is

Z = √ c + v
c − v

59

'Let's consider a photon emitted from a galaxy which is receding 
from us at the speed of light. According to the theory of a linearly 
expanding universe, Drel = cT0 and the expected Doppler shift ought to 
be Z = 2.718... 60 But, of course, if we put v = c than the whole 
expression blows up and we get an infinite answer.

'Now let's place a relay station halfway between the galaxy and 
ourselves61. Since, to an observer on the relay station, the galaxy is only 
a distance of ½cT0 away, the apparent recession velocity will be ½c and 

the measured Doppler shift will be √ c + ½c
c − ½c

= √3 . This observer 

now passes the signal on to us who will see a further shift of √3  
making a total shift of 3'

'I think I see what you are driving at' said Arthur excitedly. 'If you put 
two more relay stations in between the gaps making four stages, the 

Doppler shift will be (√ c + ¼c
c − ¼c )

4

= (√5/3)
4

= 25/9 = 2.77 ... .'

'That's right,' said Betty. 'In the limit you can put a whole string of 
(comoving) observers between us and the galaxy, you will find that the 
expected Doppler shift is 2.718... just like you predicted.'

'That's really cool.' said Arthur. 'So the cosmological Doppler shift is 
really just the familiar relativistic  Doppler shift but applied not once but 
continuously throughout the whole journey! That's fantastic!'

59 See page 66
60 See equation C on page 154
61 Like the galaxy and Earth, the relay station must be 'comoving' – i.e. 

stationary, cosmologically speaking.
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'Yes. I think so too. I don't know the details but I think we can be 
sure that in whatever way the universe expands, applying the relativistic 
Doppler formula to a whole chain of comoving observers will result in a 
Doppler shift which is equivalent to the standard formula for 
cosmological red shift

Z =
a (T 2)

a (T 1)
'

'But hang on a minute,' interrupted Arthur, ' Earlier you said that 
photons can be Doppler shifted in a way that atoms and other particles 
can't. Why can't particles be Doppler shifted too?'

Yes. What I said was very misleading. Particles can indeed be 
Doppler shifted – but that doesn't make them get bigger in the sense of 
expanding like the universe. It does, however change their apparent 
wavelength just like a photon. If a distant galaxy were to emit a neutron, 
say, its wavelength (which in Quantum Theory is defined as h/p where p 

is the momentum of the particle) will be increased by a factor of 
a (T 2)

a (T 1)
 

and its momentum will be reduced by the same factor, but, of course, it 
won't get any bigger. Likewise, atoms and even lumps of matter will 
lose momentum (and energy) due to the cosmological red shift, but they 
won't expand. That is the sense in which photons are essentially 
different from particles.

'I seem to remember an earlier discussion concerning a terrorist 
firing bullets from the back of a flat bed truck62. Is it the same as that?' 
queried Arthur.

'Yes, it is basically the same effect. It doesn't matter whether we are 
talking about photons or neutrons or bullets, exactly the same laws 
apply.'

'Suppose you put a photon in a 1 metre cube box with perfectly 
reflecting walls so that it bounced round inside for ever and ever without 
getting absorbed. Over aeons of time as the universe expanded, the box 
would remain the same size for the reasons you have explained – but 
would the wavelength of the photon increase?'

'Another very good question!'

'Well? What is the answer?'

62 See page 94
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'I don't think you are going to like the answer much.' said Betty.

'Why not?'

'Because the answer is that the wavelength will stay the same.'

'But that's ridiculous! We have spent the last half hour discussing 
why photons travelling freely through space increase their wavelength 
due to the expansion of the universe. Are you telling me that the 
universe doesn't expand inside an enclosed box?'

'No, I am not saying that.'

'Well you must be wrong then, because if the space inside the box 
expands like the rest of the universe, the wavelength of the photon must 
increase with it – as we have agreed.'

' Okay then, think of it like this. You agree that the box itself stays 
the same size. Right?'

'Right.'

'So the walls of the box are stationary. Right?'

'Right.'

'Wrong! You said yourself that the space inside the box expands 
along with the rest of the universe, so the cosmological distance 
between the wall decreases and from a cosmological point of view, the 
walls are moving inwards.'

'That's not fair! The measured distance between the walls remains the 
same so the walls must be stationary.'

'Not from the photon's point of view.'

'I suppose so. What of it?'

'It means that, while the photon is in transit, its wavelength increases 
because of the expansion of the universe, but when it hits the 
(cosmologically) moving walls it is blue shifted by precisely the right 
amount to restore the wavelength to its original value.' 

'Well, that is diabolically clever, I must say!' exclaimed Arthur.

'Yes, I suppose it is – but really that is not the way you should think 
about the situation. From the point of view of an inertial observer inside 
the box, the walls remain 1 m apart the whole time, the photon simply 
bounces round off the stationary walls and its wavelength remains 
unchanged.'
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'But if the walls of the box were, as it were, detached and allowed to 
drift apart with the expansion of the universe, then there would be no 
blue shift and, from the point of view of our inertial observer, the 
wavelength of the photon would increase?'

'You've got it! Well done!'

'Well, it has been a bit of  a mind-blowing journey but I think I have 
got a much better understanding of relativistic cosmology than I would 
have dreamed possible a few weeks ago.' said Arthur. 'Thank you.'

'My pleasure,' said his sister.
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Conclusion
Of all the remarkable things about the universe perhaps the most 

remarkable is that we can see it at all.

Just suppose our planet was shrouded, like Venus, in thick cloud. 
Night and day, the seasons and the tides, all would be a complete 
mystery. It is debatable whether physics would ever have got off the 
ground. It is probable that our understanding of the nature of gravity 
would have been limited to an Aristotelian tendency for things to fall 
into their natural place.

Suppose that our planet was cloud free but space was filled with 
interstellar dust, so that we could only see the solar system and a faint 
glow from all the stars outside it.  Isaac Newton would have had 
sufficient information to work out his famous laws and Einstein might 
have been able to formulate his theories of Special and General 
Relativity – but would we ever have deduced that the Sun was not the 
centre of the universe, but was one of many stars which were part of a 
vast whirlpool we call our galaxy?

And if we could only see the stars in our galaxy but not the myriad of 
other objects that populate our universe outside the Milky Way, would 
we ever have realised that the universe was expanding and began a finite 
time ago?

Even granted the fact that our universe is remarkably transparent to 
photons, I still find it hard to believe that the photons which started out 
on their journey towards the Hubble Space Telescope from some 
unimaginably distant galaxy, and which have travelled for perhaps 10 
billion years without being either absorbed by a particle of dust or 
deflected by a fraction of an arc-second by passing close to a lump of 
dark matter, can still be reconstructed to form a recognizable shape on a 
photographic plate.

So when next you gaze on the wonder that is the night sky or when 
you open a book of photos taken from the HST, you are bound to feel a 
sense of profound gratitude as well as awe; for if the universe had been 
ever so slightly different, we might have had no knowledge of it at all. 
As it is, advances in observational technologies and theoretical 
astronomy over the last three decades have given us an unprecedented 
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amount of information about our universe but, as always, this 
information has often served to raise more questions than provide 
answers. As far as we can tell, on a sufficiently large scale the universe 
we live in is isotropic (i.e. it looks the same in all directions) and is 
homogeneous (i.e. is basically the same everywhere). But is it infinite or 
finite? Is its expansion accelerating or decelerating? Is it dominated by 
matter or dark energy? Is there enough matter in it to stop the expansion 
or will it expand for ever? How much of it can we see?  No one knows 
for sure.

Einstein's theory of General Relativity has withstood every test that 
has been thrown at it for nearly a century and although there have been 
many attempts to modify it, it is still the best we have got at the 
moment. But Einstein's equations allow of too many possible universes 
and none of the possible candidates have that elegant simplicity which 
we crave.

There is another problem too.

We have another well attested theory which has been incredibly 
successful at explaining the behaviour of matter on a small scale – 
Quantum Theory. Normally the two theories apply to very different 
domains and do not come into conflict – but this is not the case when we 
need to talk about either black holes or the very early history of the 
universe. The trouble is that the two theories are based on ideas which 
are so far removed from each other, it is almost impossible to see how 
they can be reconciled. Einstein himself spent (wasted?) 40 years of his 
life trying to find what we are now pleased call the 'Quantum theory of 
Gravity' and many other great minds have joined the search without 
success. Most have taken the view that Einstein's theory is the one that 
is at fault – hence the search for a 'Quantum Theory of Gravity' rather 
than a 'Relativistic Theory of Quanta' – but I think this attitude may be 
mistaken. Quantum Theory differs from Einstein's theory in one 
interesting respect. Whereas the latter was dreamed up by a lone 
intellect working largely from a priori principles, the former was 
developed by many scientists arguing over details and methods of 
approach. The result is that while General Relativity stands or falls on a 
single basic principle – the principle of Equivalence – Quantum Theory 
has no such coherence. Indeed, the paradoxes which are generated by 
QT (the wave-particle duality, the collapse of the wave function, 
entanglement etc.) are of a different class than the paradoxes which we 
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have been discussing in this book. They cannot be explained simply by 
some clear thinking and a bit of maths – they have a philosophical 
dimension which makes them impossible to resolve.

So which is ultimately going to give? General Relativity or Quantum 
|Theory?

So far in the history of science, a priori theories have either been 
incredibly successful or disastrously wrong. There are at least five 
examples of the former. Copernicus was not really trying to 'save the 
appearances' when he proposed his heliocentric system of the world – he 
just knew, deep down, that the whole system of planets made so much 
more sense if it was assumed that the Sun, not the Earth, was at the 
centre. Galileo could not prove experimentally that motion was a state, 
not something which had to be maintained, he just knew, deep down, 
that it was so and that, in the absence of any friction, things would go on 
moving for ever. Newton had no idea why inertial mass and 
gravitational mass cancelled out causing all things to fall with the same 
acceleration, he just knew, deep down, that it had to be like that. 
Maxwell knew, deep down, that his equations had to be symmetrical and 
Einstein knew, deep down, that somehow the laws of physics had to be 
the same in any frame of reference.

These principles are so fundamental that it seems to me very unlikely 
that any new successful 'Theory of Everything' could possibly deny any 
of them – but I could be very wrong. My confidence in a priori 
principles was severely shaken with the discovery that left-right parity 
was violated in some nuclear interactions, so we must try to keep an 
open mind.

We seem to be facing another crisis as well. In 1960 the physicist 
Eugene Wigner noted the 'unreasonable effectiveness of Mathematics' in 
describing the physical world. In fact, by 1960, it was already clear that 
Mathematics alone could not describe all aspects of the physical world, 
because Quantum Theory only predicts the probability of events, not the 
events themselves. No amount of maths will enable you to predict 
exactly where a photon will land or when a Uranium atom will decay.

It is not sufficient to argue that probability theory is just another 
branch of Mathematics. It is true that it is possible to prove 
mathematically that the probability of a number chosen at random in the 
region of 1043 being prime is about 1%, but it is not the case that the 
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number 1043 + 1 has a probability of 1% of being prime or, indeed that it 
is simultaneously 1% prime and 99% not prime. Either it is prime or it is 
not. We just don't know. The physical world, on the other hand, appears 
to obey the laws of chance, not the laws of logic, and is therefore 
fundamentally not mathematical.

Another famous quotation, this time from Einstein himself in 1936 
goes as follows: “The most incomprehensible thing about the universe is 
that it is comprehensible.” But there are several features of the ΛCDM 
model of our universe that remain stubbornly incomprehensible. I refer 
to the problems of the so-called 'dark matter' and 'dark energy'. Now, it 
may very well be that these issues will soon be resolved, but I cannot 
help wondering if we are nearing the end of the road in our attempts to 
comprehend the universe we live in on both large and small scales. It is 
not as if we actually need to discover any new fundamental particles in 
order to feed the world's population or that we are actually ever going to 
be able to harness the energy of a rotating black hole to provide us with 
the energy we need. We have quite enough knowledge already to 
provide for the needs of the world – all that is lacking is the political 
will to implement the solutions.

On the other hand – who knows? Perhaps some future genius 
thinking in his ivory tower will come up with a new fundamental a 
priori principle which will miraculously unify and explain everything 
and set Physics and Astronomy back on the road to a deeper 
comprehension of our wonderful universe.

Any suggestions?
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Appendix
The classic Doppler effect in sound

There are two Doppler effects – the Moving Source effect and the 
Moving Observer effect. The former is most often associated with the 
sound of the siren of an ambulance or police car as it goes by; the latter 
is heard on the continent when a train passes a level crossing sounding a 
bell. Although the two effects sound very similar, they are, in fact, quite 
different.

First, the Moving Source effect. As the ambulance moves forwards, 
the sound waves in front of the ambulance are bunched up because the 
ambulance is chasing the sound. If the ambulance is moving at a speed v 
and the sound is moving (through the stationary air) at a speed c, the 

sound waves are going to be reduced in length by a factor
c − v

c . (You 

can check that this is the right factor because if v = 0, the factor equals 
1; and if v = c, the factor equals zero).

Now, if the wavelength is reduced by a factor
c − v

c  the 

frequency of the sound will be increased by the factor
c

c − v
. Now an 

increase in frequency of 6% causes the pitch of a note to go up by one 
semitone. Since the speed of sound in air is about 740 mph, the siren of 
an ambulance travelling towards you at 6% of this i.e. 45 mph, will 
cause the pitch to rise by one semitone. Similarly, as it travels away 
from you the pitch will drop by one semitone making the total 
difference one whole tone.

It is worth noting that if the object moves towards you at the speed of 
sound, the frequency becomes infinite – in other words you hear all the 
sound at once. This is essentially the cause of a sonic boom caused by 
an aircraft travelling faster then sound.

The Moving Observer effect is different because it affects the 
frequency of the sound directly, not its wavelength. If you are 
approaching a source of sound at a speed v the frequency of the waves 
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as you cross them is going to increase by a factor
c + v

c
 and the 

wavelength shortened by
c

c + v
. If v is much smaller than c then this 

formula is not very different from the Moving Source formula but if 
v = c, the frequency is simply doubled – there is no sonic boom.

On the other hand, if you are moving away from the source of sound, 
v is negative and if you move fast enough you can make the frequency 
equal to zero, in which case you won't hear the sound at all.
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The γ factor equation
γu+v =

1

√1 − (c (u + v )

c2 + uv )
2

=
c 2 + uv

√(c2 + uv)2 − c2(u + v )2

=
c 2

+ uv

√c4
+ 2c 2 uv + u2 v 2

− c2 u2
− 2c2 uv − c2 v 2

=
c 2

+ uv

√c4 − c2 u2 − c2v 2 + u2 v 2

=
c 2 + uv

√(c2 − u2)(c2 − v 2)

=
1 + uv /c2

√(1 − u2
/c2

) √(1 − v 2
/c2

)

= γu γv(1 + uv /c2)
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The apparent speed of a passing space ship
The apparent speed v' of a space ship moving from left to right at a 

speed v at a perpendicular distance D is v ' = v c
c + v sinθ

where 

sinθ =
x

√ x2
+D2

(see page 74).

To calculate the apparent distance travelled by the space ship (in 
other words, to calculate where the space ship will appear to be at every 
instant in time) we must do some integration. The time taken T for the 
object to reach a point X will be:

T = ∫
0

X
1
v '

dx = ∫
0

X
c + v sinθ

cv
dx

Now tan θ =
x
D

so dx = Dsec2
θd θ

so T =
1
v
∫dx +

D
c
∫sin θsec2

θ d θ

Now fortunately, sin θ sec2 θ dθ is a standard integral and is equal to 
sec θ so

T =
X
v

+
D
c (sec tan−1 X

D ) + C

T =
X
v

+
1
c

(√ X 2
+ D2) + C

Now when X = 0, T will not be equal to 0 because light from the 
object takes time to reach the observer so T will be equal to D/c. It 
follows therefore that  the constant of integration C = 0

hence T =
X
v

+
1
c
(√X 2 + D2)
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The Time Dilation factor deduced from Betty's 
lift experiment

To an outside observer, the lift 
moves a distance vt' in a time t'. The 
light beam, however, moves a 
distance √w 2

+ v2 t '2 . Hence we 
have:

 

t ' =
√w2

+ v2t ' 2

c
c2 t ' 2

= w2
+ v2 t '2

t '2 =
w2

c2 − v2
=

(w /c)2

1 − v2/c2

t ' =
w /c

√1 − v2
/c2

To Betty inside the lift, she sees 
the light beam travel straight across 
the lift, a distance w in a time t. 
Hence

           t = w /c
Eliminating w we get

t ' =
t

√1 − v2
/c2
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Gravitational Potential near a star
Provided that the gravitational field is small enough so that 

relativistic effects are negligible, the gravitational potential difference 
between a point on the surface and at a height h above a planet or star is 
given by the expression

Δ ϕ = ∫
R

R + h
GM

r2 dr = −GM [1
r ]R

R+h

=
GMh

R(R + h)

If the acceleration due to gravity at the surface of the planet is gs then

g s =
GM

R2

from which we get Δ ϕ =
Rh

R + h
g s

If the upper limit of the integral is ∞ then the equation becomes

 Δ ϕ = ∫
R

∞ GM

r2
dr =

GM
R

= Rg s

It follows that the time dilation factor on the surface of a planet or 
star (relative to a distant observer) is equal to

1

√1 − 2 Δϕ/c2
=

1

√1 − 2GM /Rc2
=

1

√1 − 2 Rg s /c
2

(It is interesting to note that if 2GM/Rc2 = 1 then the time dilation 
factor becomes infinite. Turning this equation round gives us 

R =
2GM

c2 which is actually the correct formula for the 

Schwartzchild radius of the star. Little if any significance should be read 
into this, as the formula for the gravitational potential of the star is only 
valid in non-relativistic circumstances – a condition which is clearly not 
met near the event horizon of a black hole.)
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Escape Velocity
On the previous page we showed that the gravitational potential at a 

height h above the surface of a star or planet is

Δ ϕ =
GMh

R(R + h)

If we let h tend to infinity, the potential at infinity is

ϕ∞ =
GM

R

and the energy needed to lift a mass m to infinity is

V = m ϕ∞ =
GMm

R

If a projectile is launched from the surface with a velocity equal to 
the escape velocity then we have

1
2

m vesc
2

=
GMm

R

vesc = √ 2GM
R

(Of course, if we put vesc = c and turn the equation round, we get the 
correct expression for the Schwatzchild radius of the object. As with the 
derivation of the previous page, little, if any, significance should be read 
into this.)
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The Schwartzchild Radius
We have referred to the following formula for the Schwartzchild 

radius of a black hole on a couple of occasions (pages 107 and 131) and 
offered two spurious 'proofs' of this fomula on the previous two pages.

r sch =
2GM

c2

Unfortunately there is no simple way to derive this formula correctly 
without using a full mathematical treatment of the four dimensional 
space time around the object. Essentially it turns out that the interval ds 
along a radial line from a non-rotating black hole must be calculated 
using the (simplified) expression

ds2
= (1 −

2GM

rc2 )dt 2
− (1 −

2GM

rc2 )
−1

dr2
/c2

where r is the 'circumferential radius' (i.e. the circumference of a circle 
round the black hole divided by 2π)

When r is very large, this expression reduces to the familiar 
expression for interval defined on page 57

ds2 = dt 2 − dr 2/c2

or I = √dt2
− dx2

/c2

It is clear, however, that something strange is going to happen when

2GM

r c2
= 1 .

The temporal term goes to zero and the spatial term blows up to 
infinity. It was this behaviour that confused everyone at first (including 
Einstein) into thinking that the event horizon was a singularity. As we 
now realize, it is only a singularity from the point of view of a distant 
observer. It is what is known as a coordinate singularity.
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